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ABSTRACT
Common ash (Fraxinus excelsior) is under intensive attack from the invasive alien pathogenic fungus Hymenoscyphus fraxineus,

causing ash dieback at epidemic levels throughout Europe. Previous studies have found significant genetic variation among

genotypes in ash dieback susceptibility and that host phenology, such as autumn yellowing, is correlated with susceptibility of

ash trees to H. fraxineus; however, the genomic basis of ash dieback tolerance in F. excelsior requires further investigation. Here,

we integrate quantitative genetics based on multiple replicates and genome‐wide association analyses with machine learning to

reveal the genetic architecture of ash dieback tolerance and of phenological traits in F. excelsior populations in six European

countries (Austria, Denmark, Germany, Ireland, Lithuania, Sweden). Based on phenotypic data of 486 F. excelsior replicated

genotypes we observed negative genotypic correlations between crown damage caused by ash dieback and intensity of autumn

leaf yellowing within multiple sampling sites. Our results suggest that the examined traits are polygenic and using genomic

prediction models, with ranked single nucleotide polymorphisms (SNPs) based on GWAS associations as input, a large pro-

portion of the variation was predicted by unlinked SNPs. Based on 100 unlinked SNPs, we can predict 55% of the variation in
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disease tolerance among genotypes (as phenotyped in genetic trials), increasing to a maximum of 63% when predicted from 9155

SNPs. In autumn leaf yellowing, 52% of variation is predicted by 100 unlinked SNPs, reaching a peak of 72% using 3740 SNPs.

Based on feature permutations within genomic prediction models, a total of eight nonsynonymous SNPs linked to ash dieback

crown damage and autumn leaf yellowing (three and five SNPs, respectively) were identified, these were located within genes

related to plant defence (pattern triggered immunity, pathogen detection) and phenology (regulation of flowering and seed

maturation, auxin transport). We did not find an overlap between genes associated with crown damage level and autumn leaf

yellowing. Hence, our results shed light on the difference in the genomic basis of ADB tolerance and autumn leaf yellowing

despite these two traits being correlated in quantitative genetic analysis. Overall, our methods show the applicability of genomic

prediction models when combined with GWAS to reveal the genomic architecture of polygenic disease tolerance enabling the

identification of ash dieback tolerant trees for breeding or conservation purposes.

1 | Introduction

The threat to indigenous plants from new and emerging forest
pests and pathogens has substantially increased in recent dec-
ades due to increased international trade and travel. Globali-
sation has enhanced trade between distant parts of the planet
with concomitant exposure of native plants to introduced
pathogens, to which they have no evolved resistance or toler-
ance. This has led to devastating and ongoing pest and pathogen
outbreaks such as Ophiostoma ulmi and Ophiostoma novo‐ulmi
causing Dutch elm disease since the start of last century
(Brasier 1991), to devastation of ash trees caused by the trans-
located Emerald Ash Borer (Agrilus planipennis) from East Asia
to North America possibly from as early as the 1980s
(McCullough 2020), to chestnut blight caused by the early 20th
century introduction of the fungus Cryphonectria parasitica
from East Asia to North America, causing the extirpation of the
once common American chestnut (Castanea dentata)
(Anagnostakis 1987). The introduction of pests and pathogens
brings novel and strong selection factors to indigenous plants,
which in the absence of a shared evolutionary history must
solely rely on standing genetic variation to survive and adapt
(Budde et al. 2016).

Trees have long generation times (in contrast to associated pests
and pathogens), where polygenic mechanisms of disease
resistance offer a broad response spectrum to the cornucopia of
threats encountered by a tree during its long life (Bruns, Hood,
and Antonovics 2015; Yeaman 2022). In forest trees, resistance
based on a major gene is therefore likely to be rare (but see the
case of western white pine trees against blister rust caused by
the introduced fungal pathogen Cronartium ribicola in North
America (Kinloch et al. 1999)). Polygenic resistance is not only
more frequent in nature but offers a more durable form of
resistance, which to be defeated requires multiple virulence
genes from the pest or pathogen (Bell 1982; Maher 2008;
Palloix, Ayme, and Moury 2009).

The development of high‐throughput sequencing technology in
combination with improved analytical tools facilitate research
on polygenic genetic mechanisms underlying forest tree pest
and pathogen resistance. Polygenic traits where multiple loci
contribute with small effects to the phenotype, complicate the
interpretation of genotype‐phenotype interactions. This is par-
ticularly true for Genome Wide Association Studies (GWAS),
which have had great success in deciphering the genetic

architecture of monogenic traits (Sánchez‐Vallet et al. 2018),
but have struggled to unravel the effects of multiple genes in
polygenic traits. However, knowledge of the genetic architec-
ture of polygenic disease resistance is crucial to support the
stability of future forests in the face of ever growing threats
from novel damaging agents (Stocks et al. 2019; Elfstrand
et al. 2020).

Ash dieback (ADB), a serious disease of common ash (Fraxinus
excelsior) in Europe, is caused by the invasive alien ascomycete,
Hymenoscyphus fraxineus (syn. H. pseudoalbidus; basionym
Chalara fraxinea) (Kowalski 2006; Queloz et al. 2011; Baral,
Queloz, and Hosoya 2014). The disease was first observed in
north‐eastern Poland in 1992, before appearing in the Baltics
in the 1990s and Denmark in 2002, France in 2008, and the UK
in 2012 (Marçais et al. 2022). Native to East Asia, H. fraxineus is
a mild leaf and shoot pathogen of indigenous Asian ash species
with insignificant overall impact on its natural hosts (Zhao
et al. 2013; Drenkhan et al. 2017). Translocation of H. fraxineus
to Europe, onto a naïve and compatible host (F. excelsior) has
initiated the ADB epidemic and resulted in an emerging disease
caused by a highly virulent pathogen. Spreading from eastern to
western Europe, the range of H. fraxineus has no spatial limi-
tations and is only restricted by higher temperatures and low
precipitation levels in southern Europe and the occurrence of
ash species (Grosdidier et al. 2018; Enderle, Stenlid, and
Vasaitis 2019). The disease similarly affects narrow‐leaved ash,
Fraxinus angustifolia, but crucially F. angustifolia has a more
southern European distribution where the pathogen is limited
by warm‐dry environmental conditions (Dal Maso 2014; Mar-
çais et al. 2022). Disease pressure builds in annual cycles where
the wind‐dispersed ascospores of the pathogen spread to new
host trees and infect them mainly during the summer months
(Marçais et al. 2022). Mycelia of H. fraxineus spread from in-
fected leaves into woody parts of the tree causing progressive
necrosis and crown dieback, which often lead to mortality of
trees of all ages. In late summer and autumn, the infected leaves
fall to the ground as leaf litter acting as conduits for sexual
recombination, the formation of apothecia and the dispersal of
new ascospores, which are completed in the following year.

The impact of ADB on F. excelsior is, in addition to tree geno-
type, dependent on multiple factors including general tree
health, age, environmental conditions, infection pressure,
presence of other pathogens and endophytes as well as density
and spatial heterogeneity of host populations (Grosdidier
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et al. 2020; Madsen et al. 2021; Marçais et al. 2022). Both tol-
erance and resistance have been used to describe the variation
of damage caused by H. fraxineus on F. excelsior. In this study
the term tolerance of ash to ADB is preferred because the
pathogen can fulfil its life cycle on leaves of ash trees with low
or high crown damage levels (N.B. for further discussion on
tolerance/resistance in relation to ash dieback please see
Marçais et al. (2022, 2023)). Previous quantitative genetic
studies have revealed a polygenic genetic architecture with
moderate to high heritability in ADB tolerance among indi-
vidual trees. Quantitative genetic studies revealed narrow sense
heritability for ADB tolerance of 0.37–0.72 (Pliura et al. 2011;
Kjær et al. 2012; Lobo et al. 2014; Muñoz et al. 2016; Seidel et al.
2024) and broad sense heritability of 0.1–0.57 (McKinney
et al. 2011; Stener 2013; Enderle et al. 2015; Seidel et al. 2024)
among different ash trials in Europe. Furthermore, the level of
crown damage due to ADB is genetically weakly correlated to
autumn leaf colouring (McKinney et al. 2011; Stener 2013) and
significantly correlated to spring bud burst (Stener 2013).
Therefore, it has been suggested that the observed genetically
determined tolerance may be partly attributed to differences in
the timing of phenological stages. Phenological avoidance of
severe disease has been identified in other pathosystems such as
Dutch elm disease where the susceptibility of elm trees is
related to spring phenology (Ghelardini and Santini 2009).
However, in previous tests of necrosis formation after direct
stem inoculation of H. fraxineus onto ash clones and progeny,
trees that performed better in the ADB‐affected trials also had
reduced necrosis, which indicates defence‐mediated tolerance
to ADB; that is, differences in the ability of genotypes to limit
the spread of the fungus into and in woody parts (McKinney
et al. 2012; Lobo et al. 2015). The relative contribution of de-
fence mediated tolerance and phenological avoidance to overall
ash dieback tolerance is unknown.

Recent studies based on GWAS of ash trees covering the UK,
Ireland and Germany (Stocks et al. 2019) and Poland (Meger
et al. 2024) aimed to identify molecular markers underpinning
ADB tolerance. Using binary phenotypes covering the extremes
of ash dieback, these studies discovered polygenic tolerance to
ADB. The UK study used pooled sequences of 1250 trees and
found 61 highly significant SNPs, many of which were within or
close to genomic regions known to be related to plant defence.
The Polish study used a smaller sample size of 300 trees and
found no significant SNPs but revealed genomic loci, which
could be used to select individuals for local breeding programs.
Here, in contrast to previous GWAS studies, the quantitative
nature of ash dieback tolerance was considered, and individual
genomic data was used. Individuals were carefully phenotyped
on a scale that partly recognises the nature of the tolerance
(rather than collapsing phenotypes and genotypes into binary
groups, that is, symptomatic vs. nonsymptomatic individuals).
This more detailed approach allowed estimation of genetic
correlations between phenology traits that are closely related to
fitness (frost avoidance) per se, but also have been observed to
correlate genetically with ash dieback as discussed above. The
present study differs from the Stocks et al. (2019) study by
assessing trees aged from 3 to 28 years, rather than young trees
(~7 years old) and uses a large sample range that covers a large
part of the North, Northeastern, and Central part of the distri-
bution area of F. excelsior, sampling across several countries and

along ecological gradients. Here, our findings thus rest on a
large sample of carefully phenotyped trees in replicated clonal
plantings representing a broad genomic background (genotypes
were replicated within each site but different sets of genotypes
were present at each site). Susceptibility of trees was expressed
at different ages and under field conditions based on coopera-
tion between international research organisations in several
genetic improvement programs. Given this diversity, the results
are expected to be representative of the host‐pathogen interac-
tion in a major part of the natural distribution of F. excelsior.

Here, we investigated the genetic architecture of F. excelsior
tolerance to ADB in six countries across Europe, taking
advantage of clonal common garden and progeny trials. The
aim of the study was to identify associations between the level
of crown damage (a continuous trait, which is a proxy for the
overall impact of ADB), spring and autumn leaf phenological
traits, and molecular markers. Due to the relatively large heri-
tability estimates identified from previous studies and correla-
tions between ADB and phenology, we hypothesised that: (1)
genetic variants (SNPs) can predict ash dieback crown damage
and phenological variance among individuals; (2) SNPs of
importance are located within coding regions and in functional
areas related to tree defence and phenology; (3) there are
overlaps between SNPs associated with ADB crown damage and
SNPs associated with phenology traits. Except for the inclusion
of a single progeny trial, ash tree leaves were sampled within
clonal trials where multiple ramets of each clone were grown
within each site, providing accurate quantitative phenotypes,
and therefore providing the best precondition to capture asso-
ciations between phenotype and genome. To address the above
hypotheses, multiple phenotypic traits were recorded on com-
mon ash trees on a quantitative scale to reflect the phenotypic
spectrum of ADB symptoms on individual trees and of spring
and autumn phenology. Furthermore, GWAS were used to
identify SNPs associated with phenotypes; subsequently, SNPs
with the lowest P‐values were used to derive the Random
Forests genomic prediction model. Combining these ap-
proaches leveraged the power of GWAS to remove low quality
SNPs, providing high quality genomic data to the machine
learning model.

2 | Materials and Methods

2.1 | Field Assessments and Sampling

A unique panel of phenotyped genotypes was constructed by
selecting genotypes from a large set of common garden trials
(some originally intended for seed collection) with non-
overlapping genotypes located in Austria, Denmark, Germany,
Ireland, Lithuania, and Sweden. All trials except one were
clonal trials with replicated genotypes, while one of the Danish
trials was a progeny trial consisting of 96 half‐sib families
(Table S1). The genotypes represented indigenous material from
each of the countries at a regional scale (Table S1), which had
all been impacted by wind dispersed ascospores of H. fraxineus
with most trees showing ADB symptoms. The common garden
trials had been monitored for ADB symptoms before the present
study and significant variation in the intensity of disease
symptoms had been observed among genotypes (see references
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in Table S1). Ash trees with low susceptibility to ADB occur in
low frequency across Europe (McKinney et al. 2014), but the
applied sampling strategy based on wide sampling and use of
prior knowledge from common gardens allowed us to obtain a
set of almost 500 genotypes with a gradient from high to low
susceptibility to ADB, and also provided a good representation of
the F. excelsior genetic background in Northern, Northeastern,
and Central Europe.

All trees at each trial were assessed for five traits: spring
phenology (i.e., spring bud burst), crown damage with typ-
ical ADB symptoms, and three scores related to autumn
senescence. The traits were scored simultaneously in all
sites and descriptive statistics were calculated (Table S1 and
Table S2). A total of 4580 trees were assessed across planting
sites for the five phenotypic traits, with 841 trees genotyped
with microsatellite markers (from the clonal trials to test
matching of different ramets of the same genotype) and
486 trees (one per genotype) subjected to whole genome
sequencing.

Spring bud burst: The leaf phenological stage of each tree was
assessed and scored on a scale from 0 to 7: Score 0: Bud still in
winter stage, 1: Bud swollen, black and/or green bud scales en-
close the leaves completely, 2: Buds are beginning to burst and
leaves only just visible, 3: Leaves visible, very small and have just
escaped the bud, 4: Leaves are unfolding, glossy and the shoot
starting to stretch, 5: Leaves stretched markedly, still glossy, 6:
Leaves full size, still “spring fresh” and not completely hardened,
7: Mature, all leaves are dim and hardened. Please see Figure S1
for illustrations. Each tree was given one score that reflected its
average spring phenological stage across the entire crown on the
assessment day. Several of the sites were scored twice (Table S1)
to assure capturing a time point with maximal phenotypic vari-
ation among genotypes.

ADB crown damage: Trials with young trees were scored on a
scale with five categories: 0: No visible symptoms, 1: < 10% of
the crown with ADB symptoms, marginal damage on stem and
crown, 2: 10%–50% of the crown with ADB symptoms, presence
of dead parts in the crown and discoloured necrotic parts on
stem, 3: > 50% of the crown with ADB symptoms, prominent to
highly dominant presence of damage on shoots, branches and
stem, including larger necrotic areas on stem and branches, 4:
tree dead because of severe infection. For older trees three
additional categories were included (see Table S3). To rank
genotypes across the sites, crown damage scales were trans-
formed into percentage using the following five class means
(0%, 5%, 30%, 75%, 100%).

Autumn leaf yellowing: This trait was scored on a five‐step scale
reflecting the overall impression of the autumn colour of each
tree using the following scale: 0: leaves still dark green, 1: leaves
slightly lighter, or dark green but with yellowing leaf nerves, 2:
leaves green but with yellow spots on leaflets, 3: yellowing
leaflets, 4: completely yellow leaves. See Table S3 and Figure S2
for detailed descriptions and illustrations.

Autumn leaf loss: This trait was scored as percentage of leaves
lost in the crown apparently due to autumn senescence and
scored in 10% classes (Table S3 and Figure S2).

Autumn status: This trait reflects the overall progress towards
dormancy status of a tree; the remaining leaves showing
senescence symptoms combined with the progression of
senescence symptoms. Symptoms of senescence of foliage:
summer green colour becomes lighter, yellowing, brownish,
withering (typically from the rim towards the middle) and
crusted, dried out or hanging leaves. Thus, the score is gradual
and shows average tree senescence level (full dormancy = 100%)
(Table S3 and Figure S1).

A subset of F. excelsior individuals which had been phenotypi-
cally assessed, were sampled from each site for DNA extraction.
Based on data of ADB assessments from previous years we
aimed to span the entire ADB crown damage range (healthy,
intermediate and unhealthy) from each trial when selecting the
trees. Information regarding phenotypic assessment of trees at
each site and those selected for DNA sequencing is presented in
Table S2. From each sampled tree, 2–4 fresh leaflets were col-
lected and placed in ziplock‐bags with silica gel. The samples
were stored at 4°C until further processing.

2.2 | Statistical Analyses

Phenotypic data for the GWAS was derived from the ADB
crown damage and phenology scores described above. Least
square mean values (LSMeans) were estimated for each geno-
type (for genotypes from clonal trials as clonal LSMeans, for
genotypes from progeny trial as family LSMeans) per trial using
the model given below using PROC GLM in SAS 9.4:

Y B C ε= µ + + + ,ijk i j ijk

where Yijk is the phenotypic score measured for trees, µ is the
overall mean of the trial score, Bi is the fixed effect of block within a
trial, Cj is the random effect of clone/family, and εijk is the residual.

Since the genotypes were phenotyped at different sites and ages,
the LSMeans had to be converted to relative values before they
could be used in the GWAS. We therefore subtracted the mean
value per trial as follows:

j

z

rPhenotype = LSMean –LSMean , for genotype ,

tested in trials .

j z jz z( )

Thus rPhenotypej(z) quantifies how much a given phenotype
deviates (positively or negatively) from the average tested
genotype at its site. We used this value as a quantitative mea-
sure in the GWAS to identify SNPs that contributed to a better
or poorer performance of the single genotype in the given trait.

Genetic correlations (rG) among traits were calculated using
bivariate analysis in ASReml v4.2 using the following equation:

r
σij

σiσj
= ,G

where σij is the genotype covariance component between traits
i and j, σi and σj are the standard deviations for genotype
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variance components for traits i and j, respectively. Again, this
was done per trial since the genotypes were nonoverlapping
between sites.

2.3 | DNA Extraction

DNA was extracted from 20mg of dried leaf tissue using the
NucleoSpin Plant II kit (Macherey‐Nagel, Denmark). DNA was
extracted according to the manufacturer's protocol with the
following modifications: 100 μL of lysis buffer PL1 was added to
each sample, an additional initial physical disruption step using
a Qiagen Tissue Lyser II (Qiagen, Germany) at 25 rpm/s for
1 min with two 3mm steel beads for each sample was made,
then 500 μL additional lysis buffer PL1 was added to each
sample, before two additional physical disruption steps at
25 rpm/s for 1 min. Subsequently, 10 μL RNase A was added to
each tube, the samples were vortexed briefly and incubated at
65°C for 15 min and inverted two–three times during the
incubation. Samples were placed in a centrifuge at 8000 rpm for
5 min to remove crude lysate. Supernatant was transferred to a
violet ringed NucleoSpin ii tube, and from this point extracted
according to the manufacturer's instructions. Extracted DNA
was eluted in 50 μL volumes and concentration was measured
using a Qubit 3.0 fluorometer (Invitrogen, USA) and Qubit
dsDNA BR kit (Invitrogen, USA). In total, 486 trees were
selected for whole genome sequencing.

2.4 | Microsatellite Analysis

Before library preparation at least two ramets per genotype
within each clonal trial were genotyped using microsatellite
markers to omit potential grafting or sampling errors in
the data. In cases of mismatch between genotyped ramets, the
genotype was omitted from the study. Microsatellite analyses
were performed with three selected primer pairs multiplexed in
a mix: FEMSATL11 and FEMSATL19, as well as FEMSATL12
(Lefort and Douglas 1999; Gerard, Fernandez‐Manjarres, and
Frascaria‐Lacoste 2006). PCR amplifications were carried out
using the Qiagen Multiplex PCR Kit (Qiagen, Germany) ac-
cording to the manufacturer's instructions but scaled down to
10 μL reaction volume. PCR amplifications were performed
under the following conditions: initial denaturation at 95°C for
15 min, 30 cycles of denaturation at 94°C for 30 s, annealing at
57°C, extension at 72°C for 60 s, and final extension at 60°C for
30 min. PCR products were analysed on the ABI 3130xl Genetic
Analyser (Applied Biosystems, Foster City, CA, USA).

2.5 | Library Preparation

DNA was sheared using a LE220‐plus Focused‐ultrasonicator
(Covaris, USA), with a target insert length of 500 bp. Sheared
DNA fragment size and concentration was assessed using a
Fragment Analyzer 5300 with 48 capillaries. The Fragment
Analyzer was operated by the National High‐Throughput DNA
Sequencing Centre (University of Copenhagen, Denmark).
DNA libraries were built using the BEST protocol (Carøe
et al. 2018) with an input DNA quantity of 100 ng. Prepared

libraries were PCR‐indexed (Table S4) using AmpliTaq Gold
polymerase with the following conditions: 95°C for 10 min,
followed by 12–16 cycles at 95°C for 20 s, 60°C for 30 s, 72°C for
40 s, and a final elongation step at 72°C for 7 min. DNA libraries
were dual indexed and subsequently pooled into equimolar
concentrations with a maximum of 96 samples in each pool.

Pooled DNA was sequenced by Macrogen Europe (Amsterdam,
The Netherlands) on the NovaSeq. 6000 platform with 150 bp
PE reads, using the S4 flow cell workflow. A further 10 samples
were sequenced on the Illumina HiSeq. 4000 platform at
the National High‐Throughput DNA Sequencing Centre
(University of Copenhagen, Denmark). All sequences were de-
multiplexed using bcl2fastq v2.20.0.422. Demultiplexing was
performed by Macrogen Europe and the National High‐
Throughput DNA Sequencing Centre.

2.6 | Adaptor Trimming, Quality Control and
Mapping

Quality control and adaptor removal of demultiplexed DNA was
performed using BBMap v38.22 (Bushnell 2014). Adaptors were
trimmed with BBduk and sequences were filtered for low
quality reads, removing those with average quality less than 20,
and further filtered using the following options mink = 11,
qtrim = rl, minlen = 50, tbo = T, ktrim= r, and k= 23.
Remaining sequences were aligned to the Fraxinus excelsior
reference genome (BATG0.5) (Sollars et al. 2017), and converted
to SAM format using BWA v0.7.17‐r1188 (Li and Durbin 2009),
and to BAM format using Samtools v1.10 (Li et al. 2009).
Sequenced reads, which did not align to the F. excelsior refer-
ence genome and read pairs which mapped to mitochondrial
and chloroplast regions were removed from the analysis.
Remaining sequences that mapped to the nuclear genome gave
a mean sequencing depth of 9x with a standard deviation of 8.4
(Table S5).

2.7 | Genotype Likelihoods, Imputation, and
Genotype Probabilities

Genotype likelihoods were calculated for polymorphic positions
that passed quality control checks in the F. excelsior reference
genome (SNP sites) within ANGSD v0.935 (Korneliussen,
Albrechtsen, and Nielsen 2014). The likelihoods were calculated
using the SAMtools model (gl 1) and a minor allele frequency
threshold (MAF) of 0.05; sites with data for fewer than 30 in-
dividuals were removed (minInd); a minimum base quality
score of 20 (minQ) was used; excessive mismatches were re-
moved (−C 50); reads with a flag above 255 (remove_bads 1)
and read pairs, which did not map correctly were removed
(only_proper_pairs 1); reads that had multiple best hits were
removed (uniqueOnly 1); finally a p value threshold of 2 × 10−6

was used to call SNPs. Furthermore, the BAQ algorithm was
included in the analysis to remove false SNP calls due to mis-
alignment of indels (Li 2011). To reduce computational time
ANGSD was launched in parallel, using GNU parallel
v20220422 (Tange 2022). Due to the varying level of coverage
between samples of aligned whole genome sequences, missing
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values were imputed, and subsequently genotype probabilities
were calculated in Beagle v3.3.2 (Browning and Browning 2007).
An overview of the computational pipeline is shown in Figure 1.

2.8 | Population Structure

Population structure was inferred using SNP genotype like-
lihoods from ANGSD and assessed using PCAngsd v0.97
(Meisner and Albrechtsen 2018). Before calculation of principal
components, linked SNPs were pruned using Plink2
v1.90beta6.24 (Purcell et al. 2007), and the indep‐pairwise set-
ting was applied, with a window size of 50, a variant count of
0.5 and a pairwise R2 value of 0.5. To prevent confounding
factors arising during subsequent association tests, a covariance
matrix was estimated and included in subsequent association
tests. Eigenvectors were calculated in R from the covariance
matrix using the R base function ‘eigen’. Significance values of
eigenvectors were calculated using the Tracy‐Widom test within
the R package AssocTests (Wang, Zhang, and Li 2020). There
were three significant principal components (eigenvectors)
which were included as covariates in association tests.

2.9 | Association Testing

We performed a genome wide association analysis for all quanti-
tative traits using a generalised linear framework implemented in
ANGSD v0.935 (Skotte, Korneliussen, and Albrechtsen 2012). The
quantitative phenotype used in the association was the deviation
of the genotype from the average performance at the site it was
tested (rPhenotypej(z), as described above). The following options

were selected for the association test, ‘doAsso 6’ as the dosage
model was used, ‘yQuant’ as phenotypes were quantitative, ‘Pva-
lue 1’ to print p values, ‘doMaf 4’ to estimate major/minor allele
frequency from genotype probabilities, ‘minHigh 30’ to require a
minimum of 30 credible genotypes, ‘minCount 30’ to require a
minimum of 30 credible minor alleles and the ‘cov’ option which
contained the first three covariates from the PCAngsd output.
Resultant p values were ranked (the lowest P‐value SNP was
ranked as number 1) and used as input to a machine learning
model. SNPs were not corrected for multiple tests, as after ranking
based on p value they were used as input for genomic prediction
with Random Forests. An association for each genotype and
phenological trait was created independently.

2.10 | Genomic Prediction Using Random Forests

The SNPs with the lowest p value from each trait in ANGSD
association testing were exported to an R implementation of
Random Forests (v4.6‐14) for a genotype‐phenotype linear regres-
sion analysis. Before running the model, SNPs were called and
converted to HapMap format. That is, top ranked SNPs based on p
value were converted from Beagle format containing genotype
probabilities to VCF using FCgene v1.0.7 (Roshyara and
Scholz 2014), then SNPs were called and converted to HapMap
format using a custom script available here: https://github.com/
clydeandforth/gwas_ash_adapt. SNPs were used as dependent
variables, representing the genotype, and the phenotypic traits
were independent variables represented by a continuous scale. The
random forest ensemble model was conducted for each phenotypic
trait independently. Within each model, hyperparameter settings
such asmtry and ntreewere tested and settings, which provided the
most stable model, were used.

FIGURE 1 | Flow chart of laboratory work and computational pipeline. After collecting Fraxinus excelsior leaves, DNA was extracted from a

leaflet, sequenced, and analysed using GWAS and machine learning. GL = genotype likelihoods, GP = genotype probabilities, LD= linkage dis-

equilibrium, PCA= principal component analysis. [Color figure can be viewed at wileyonlinelibrary.com]
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Genetically distinct genotypes were randomly split 50%:50%
into training (n= 243) and test (n= 243) datasets. Both the
training and test datasets contained the genotypic and pheno-
typic data for 50% of the samples. The model was trained on the
training data set and then used to predict the phenotypic score
of the test data set. The linear relationship between the pre-
dicted score and the actual phenotypic score was predicted
using an adjusted R2 value. To understand the ability of varying
quantities of SNPs to predict the phenotype (adjusted R2), SNPs
were divided into groups (cohorts) by lowest p value, that is, the
lowest p value was SNP rank 1 and the 10th lowest was SNP
rank 10. Based on these rankings, the SNPs were allocated into
cohorts of the lowest 10, 50, 100, 500, 1000, 10 000, 25 000,
50 000, 100 000 and 1 000 000. For each cohort a train/test‐run
was conducted 100 times (using a different seed number for
each run, thereby giving a unique split of the data in each run).
Conducting the train/test‐run 1000 times did not change the
results. The mean R2 of each permutation set for each cohort
was taken as the final adjusted R2 value, and the highest
adjusted R2 value indicated the cohort of SNPs that best pre-
dicted the phenotypes (best cohort).

2.11 | Functional Enrichment Analysis

The best performing cohort of SNPs from the machine learning
models were aligned to the F. excelsior reference genome, and
structural annotations of genic regions from the alignment were
extracted. Structural annotations containing SNPs in FASTA
amino acid format were used as input to the KOBAS‐i online
webserver (Bu et al. 2021). The organism most closely related to
F. excelsior in the KEGG pathway database was Olea europaea
var. sylvestris which was used as a reference for pathway over-
representation analysis. Significantly overrepresented func-
tional groups were calculated using Fisher's exact test.

2.12 | Permutation Importance and Feature
Selection

The predictive ability of each SNP within the maximal cohort for
each phenotypic trait (i.e., the number of SNPs which gave the
highest R2 value) was evaluated using the importance function in
Random Forest, by selecting type= 1 and scale = FALSE. The
value assigned to each SNP as a feature is the permutation
importance (PI) (Debeer and Strobl 2020). The PI is a numeric
value which can be positive or negative; a higher PI value indi-
cates higher predictive power. To account for linkage dis-
equilibrium (LD), SNPs were pruned as described above using
Plink v1.90beta6.24 (Purcell et al. 2007), as LD can considerably
affect importance measure calculations (Meng et al. 2009). The
final SNP sets for each trait used in permutation importance
calculations are presented in Supporting Information Data S1–S5.

3 | Results

3.1 | Genetic Correlation Between Ash Dieback
Crown Damage and Phenological Traits

Our data shows that estimates of genetic correlation between
ADB crown damage and phenology vary substantially among
clonal trial populations, but autumn leaf yellowing was con-
sistently and significantly negatively correlated with crown
damage in all trials, except Ireland which showed the same
trend but lacked significance (Table 1). This negative correla-
tion means that the more a tree shows leaf yellowing at a given
timepoint, the less it is affected by ash dieback. Genetic corre-
lations for the three remaining phenotypic traits were variable,
as autumn status showed a significant negative correlation to
ADB crown damage at three of the sites, autumn leaf loss showed a
significant positive correlation to ADB crown damage in three of the

TABLE 1 | Genetic correlations between ADB crown damage and phenological traits in Fraxinus excelsior. Correlations in bold are significant.

Sampling site
Autumn leaf
yellowing ±SE

Autumn
leaf loss ±SE

Autumn
status ±SE

Spring bud
burst ±SE

Kusel, Germany −0.17 0.15 −0.13 0.15 −0.002 0.21 −0.01 0.14

Chiemsee, Germany −0.27 0.22 0.33 0.20 0.19 0.22 0.18 0.24

Landstuhl, Germany −0.24 0.21 −0.02 0.21 0.16 0.19 0.22 0.21

Tjærby, Denmark −0.69 0.36 −0.04 0.13 −0.22 0.16 −0.54 0.13

Tuse Næs, Denmark −0.56 0.17 0.18 0.22 −0.40 0.18 0.06 0.26

Silkeborg, Denmark −0.69 0.68 −0.10 0.60 −0.47 0.56 0.49 0.50

Snogeholm L,
Sweden

−0.71 0.14 −0.02 0.18 −0.99 0.14 −0.09 0.21

Snogeholm S,
Sweden

−0.54 0.18 0.61 0.13 −0.11 0.27 −0.27 0.18

Kilmacurragh,
Ireland

−0.09 0.12 0.35 0.12 0.02 0.14 −0.37 0.11

Šakiai, Lithuania NE NE 0.21 0.23 0.26 0.26 −0.32 0.29

Feldkirchen,
Austria

−0.41 0.25 0.07 0.40 −0.06 — −0.44 0.18

Note: Significance threshold: p ≤ 0.05.
Abbreviations: NE, nonestimable due to lack of genetic variation among clones; SE, standard error.

7 of 17

 13653040, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/pce.15361 by N

O
R

T
H

W
E

ST
 G

E
R

M
A

N
 FO

R
E

ST
 R

E
SE

A
R

C
H

 IN
ST

IT
U

T
E

, W
iley O

nline L
ibrary on [27/01/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



trials assessed and spring budburst had both positive and negative
correlations to ADB crown damage. Due to the consistent signifi-
cant negative correlation between ADB crown damage and autumn
leaf yellowing, genomic associations for these traits are presented
below. Data for the remaining three traits are mainly presented in
supplementary information.

3.2 | Genotype‐Phenotype Associations Reveal
Signatures of Ash Dieback and Autumn Leaf
Yellowing Within Genomic Linkage Blocks

Associations between genomic variants (SNPs) and phenology
traits were tested for significance. Within the GWAS workflow

the population structure was accounted for by including prin-
cipal components as covariates. The population structure of all
sequenced samples shows that they largely cluster geograph-
ically by their sampling site (Figure 2). Across phenological
traits SNPs followed a polygenic genetic architecture (Figure 3).
This is consistent with previous plant GWAS (Demirjian
et al. 2023). Linkage blocks displayed using Manhattan plots
revealed associated SNPs (Figure 3). There were no SNPs below
the typical GWAS significance threshold of p≤ 5 × 10−8 for the
ash dieback crown damage association (Figure 3a) and eight
SNPs below the threshold for the autumn leaf yellowing asso-
ciation (Figure 3b). None of the eight SNPs significantly asso-
ciated with autumn leaf yellowing were located within or near
to coding regions. The top ranked SNPs, that is, those with the
lowest p values, were used as input data for Random Forest
linear regression model.

3.3 | High Phenotypic Variance is Predicted by a
Relatively Low Number of SNPs

SNPs were fitted into a Random Forest linear regression model
where the maximum adjusted R2 value for each trait was cal-
culated by placing SNPs into cohorts between 10 and 1 million
based on their GWAS p value, with for example cohort 10 being
the SNPs with the 10 lowest p values for that trait association.
This approach revealed that the maximal number of SNPs with
high predictive ability for observed genotypes (adjusted R2) was
25k (adjusted R2 = 64%) for ADB crown damage, 100k (adjusted
R2 = 75%) for spring bud burst, 10k (adjusted R2 = 63%) for
autumn leaf yellowing, 100k (adjusted R2 = 84%) for autumn
leaf loss and 50k (adjusted R2 = 78%) for autumn status
(Figure 4). High predictive power as indicated by adjusted R2

values for each trait were reached using far lower numbers of
SNPs. For example, 50 SNPs predict 45% of the genotypic var-
iance for ADB crown damage, increasing to 48% for 100 SNPs to
57% for 5k SNPs before the maximal R2 of 64% is reached
with 25k SNPs. Similarly, the pattern of genomic prediction in
Figure 4 for the autumn leaf yellowing trait shows a more

FIGURE 2 | Principal component analysis showing clusters of

sequenced Fraxinus excelsior individuals. Sequenced individuals are

grouped according to their sampling site. [Color figure can be viewed at

wileyonlinelibrary.com]

FIGURE 3 | Manhattan plots of ash dieback crown damage (a) and autumn leaf yellowing (b). The plots reveal a polygenic genetic architecture

and shown in the plots are several linkage blocks and their contig number in the Fraxinus excelsior BATG‐0.5 draft genome. SNPs marked in red are

below the standard GWAS threshold of p≤ 5 × 10−8 which is also marked with a broken red horizontal line. [Color figure can be viewed at

wileyonlinelibrary.com]
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gradual rise to reach the plateau, as the first 10 SNPs have an
adjusted R2 value of 3% which increases to 32% with 100 SNPs and
54% with 1k SNPs before reaching a peak of 63% at 10k SNPs. The
remaining three traits (spring bud burst, autumn leaf loss and
autumn status) required more SNPs to reach their maximal
adjusted R2 value at 50k (autumn status) and 100k (spring bud
burst and autumn leaf loss) SNPs, and as with the ADB crown
damage trait have a rapid increase in proportion of variance ex-
plained from relatively few SNPs (Figure 4). For all traits,
increasing the number of SNPs using those selected by GWAS p
value enables greater prediction of phenotypic variance (Figure 4).

The cohort of SNPs resulting in the highest adjusted R2 value
was used for functional enrichment and permutation impor-
tance (PI) analysis. Permutation importance is a measure of
model performance where each feature (here SNPs) is randomly
shuffled, and the error rate of the model calculated (Nicholls
et al. 2020). For example, as 25k SNPs produced the maximal
adjusted R2 value for ADB crown damage, SNPs from this
cohort were first assessed for enrichment of the gene function
based on their loci. Secondly, the SNP set was pruned for
linkage disequilibrium and the reduced number of SNPs were
thereafter ranked according to their permutation importance.
Selected SNPs were those that were top ranked from a machine
learning model of PI (i.e., having the greatest effect on pheno-
type prediction). SNPs which remained after pruning were the
final list of SNPs for each trait and those which were used for
further analysis (Supporting Information Data S1–S5).

3.4 | SNPs Which Predict ADB Crown Damage
Are Located Within Coding Regions of Genes
Related to Stress Tolerance and Phenology

Ash dieback crown damage is an overall measure of the damage
inflicted on woody parts of individual trees by H. fraxineus over
several years. Multiple ramets of each genotype were assessed to
obtain an average figure. Genomic predictions of ADB crown
damage using SNP variants gave the highest predictive effect using
25k SNPs (adjusted R2 = 63%). After pruning for linkage

disequilibrium, a final list of 9155 SNPs remained, and the top 100
ranked unlinked SNPs could predict 55% (adjusted R2 = 55%) of the
variation. These SNPs were ranked based on their PI score. The
loss of predictive ability after removing linked SNPs was negligible
as the unlinked 9155 SNPs still had the same value (when digits
were rounded), with an adjusted R2 of 63%. The linked SNPs which
were pruned from the data set had similar predictive ability with a
marginally reduced R2 of 62%, revealing redundancy among the
25k SNPs which is likely due to linkage disequilibrium.

Alignment of the 25k SNPs to gene loci on the ash reference
genome and a subsequent clustering analysis, provided a profile
of enriched functional groups with high predictive power of
ADB crown damage (Figure 5). Among the enriched functional
homologues were those groups encoding biosynthesis of sec-
ondary metabolites and sesquiterpenoid and triterpenoid bio-
synthesis. These enriched defence‐related functional groups
indicate coding variation in tolerance and phenology genes,
which may reflect the observed phenotypic variation in toler-
ance. For example, the biosynthesis of secondary metabolites
group includes phytoalexins and phenolics, known anti-
microbial, communication and stress‐response compounds
(Bhattacharya, Sood, and Citovsky 2010; Ahuja, Kissen, and
Bones 2012). This indicates a variable defence response among
F. excelsior individuals to H. fraxineus.

The PI score and genomic location (i.e., within a coding
domain, intragenic region, up or downstream of a gene, inter-
genic region or untranslated region) of the top 100 ranked SNPs
is shown in Figure 6. SNPs within the top 100 for PI score which
were located on or near to genes were functionally annotated
using the NCBI and KEGG databases. Among the top 100 SNPs,
three were on coding domains; all three SNPs cause non‐
synonymous, missense mutations which change the translated
amino acid (Table 2). In addition three SNPs were located in
untranslated regions (SNP 2, telomerase reverse transcriptase;
SNP 6, presenilin At1g08700; SNP 56 disease resistance RPM1‐
like) and although these are not translated into proteins they
have important effects on transcriptional regulation, such as
mRNA stability and translation which have demonstrable

FIGURE 4 | Average adjusted R2 for five phenology and ash dieback crown damage traits using the top 10–10 000 ranked SNPs from Random

Forests machine learning models. The observed phenotype for five traits was predicted using genotypes (SNPs) with an adjusted R2 value between 0

and 1 (displayed in the y‐axis). [Color figure can be viewed at wileyonlinelibrary.com]
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effects in human disease (Hindorff et al. 2009; Steri et al. 2018;
Conteduca et al. 2021). Of the remaining top 100 SNPs, seven
were located up or downstream of a gene, 13 were within
intragenic regions (introns), and the remaining 74 were within
intergenic regions.

The highest ranked SNP within a coding domain was the 57th
ranked SNP overall by PI and by GWAS ranking had the 17961st
lowest p value (Figure 6). This SNP was located within a gene
region homologous to a cytochrome P450‐71A1‐like protein
which is involved in avocado fruit ripening (Bozak et al. 1990),
but in which a mutation on a gene homologue in barley sup-
presses the development of necrotrophic fungal pathogens
through reinitiating programmed cell death, a plant defence
mechanism that reduces access to nutrient rich plant tissues and
which can be hijacked by pathogen elicitors (Ameen et al. 2021).
The second of the three SNPs is located within a region encoding
a wall‐associated receptor kinase‐like 20 protein; homologues of
this gene are part of the pattern triggered immunity (PTI) system,
a conserved plant defence system which recognises conserved
components of plant pathogens and triggers an immune response
(Jones and Dangl 2006). The third and final coding domain SNP
was located on an AP‐1 complex subunit gamma‐2‐like gene
which in Arabidopsis is critical for the development of male and
female gametophytes (Zhou et al. 2022).

3.5 | Autumn Leaf Yellowing ‐ Pathogen
Triggered Immunity and Phenological Regulation
Are Linked to Trait Variation

Autumn leaf yellowing is a quantitative measure of loss of green
pigment in leaves. Colour change in F. excelsior is usually green

to yellow, but leaves may stay green before falling in Central
Europe (Roloff and Pietzarka 1997). Genotypic prediction of
autumn yellowing based on the top 10k ranked associated SNPs
could predict 63% of this trait. After LD pruning there were
3740 SNPs remaining. This increased the R2 to 72% suggesting
that some pruned SNPs did not add to the predictive ability but
instead decreased the accuracy of the model and did not con-
tribute to an accurate genotype prediction. However, the re-
moved linked SNPs (n= 6260) gave a R2 of 58% suggesting that
many SNPs were linked and similar to ADB crown damage
reveals redundancy in the larger (10k SNP) data set.

Enrichment analysis based on the 10k SNP data set reveals
functional groups homologous to plant defences such as bras-
sinosteroid biosynthesis, sesquiterpenoid and triterpenoid bio-
synthesis and isoquinoline alkaloid biosynthesis (Figure 7).
Given that autumn leaf yellowing is correlated to ADB crown
damage, SNPs within these functional groups may be a com-
ponent of ash tolerance to H. fraxineus.

Within the top 100 SNPs with the highest PI, seven were within
coding domains (where six produced non‐synonymous amino
acid substitutions), two were in untranslated regions, four were

FIGURE 5 | Enrichment analysis of genomic regions comprising

the 25k single nucleotide polymorphisms (SNPs) with the highest pre-

dictive ability within a machine learning model for ash dieback crown

damage. Colours represent related functional groups (in this figure only

pink/red circles represent related functional groups), as pathways were

calculated using a network algorithm (Rosvall and Bergstrom 2008).

Note that blue circles indicate unrelated functional groups. Bubble size

represents the magnitude of enrichment for each functional group.

Displayed bubbles have a p≤ 0.05. [Color figure can be viewed at

wileyonlinelibrary.com] FIGURE 6 | Top 100 SNPs ranked by permutation importance

linked to ash dieback crown damage in Fraxinus excelsior individuals.

SNPs were ranked from a panel of 9155 SNPs, ranked according to their

permutation importance. SNPs are marked according to their position

within a genic region: SNPs within 500 bp of genic regions are marked

‘Up/Downstream’; SNPs resulting in a coding domain substitution

(CDS) are shown in green and the value given in the y axis is their PI

rank with GWAS rank in parentheses. SNPs which cause missense

mutations have functionally annotated coding domains. Permutation

importance score is shown in the x axis. [Color figure can be viewed at

wileyonlinelibrary.com]
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up or downstream of a gene, eight were within introns and the
remaining 79 were on intergenic regions (Figure 8). Of the
seven SNPs on CDS, the first at SNP rank 20 was a putative
pectinesterase with a pectin methylesterase inhibitor domain on
the 5' region of the gene. Pectinesterase inhibitors have known
anti‐virulence functions, as they mitigate the effect of pectin
lyase effectors, which are a common component of the viru-
lence arsenal in many plant pathogens (Dean et al. 2012; Liu
et al. 2018). Two genes with non‐synonymous SNPs were
located within gene regions for fungal elicitor recognition and
are homologous to components of the PTI system (Jones and
Dangl 2006). As previously described, PTI is an evolutionary
conserved pathway which recognises molecular patterns and
upon recognition activates defence components such as the
oxidative burst. Specifically these are annotated as an L‐type
lectin‐domain containing receptor kinase IV.2‐like, ranked at
SNP 77 (Wang et al. 2014, 2018) and an MDIS1‐interacting
receptor like kinase 2‐like ranked at SNP 84 (Coleman
et al. 2021). The penultimate plant defence related SNP in a
coding domain was ranked at 81 and has no characterised
protein homologues, and the final SNP, ranked at 95 encodes a
synonymous nucleotide on a coding domain (tetracycline resist-
ance, class A‐like). There were two SNPs causing non‐synonymous
amino acid substitutions on gene coding domains, which have
functional homologues related to phenology regulation. The first of
these at SNP rank 54 is within both a 3'UTR and a coding domain,
which was functionally annotated as a homologue of CBSX protein
which regulates flowering and leaf maturation through the thior-
edoxin system. The second amino acid substitution is within a
choline transporter like‐1 (CTL‐1) which is associated to vesicular
transport of the auxin transporter PIN1. Auxin is a plant hormone,
which regulates many plant development functions including leaf
abscission and yellowing (Jin et al. 2015).

4 | Discussion

Here we found that associated SNPs could predict ash
dieback crown damage with an adjusted R2 up to 63%
based on 9155 unlinked SNPs. This does not suggest that
the set of SNPs can predict the exact crown damage of a
single tree from its genotype with such precision, because
the phenotype of a given tree is dependent not only on its
genotype but also on environmental variation. Results from
common garden studies suggest moderate to high genetic narrow‐
sense heritability (hns

2=0.37–0.72) (Pliura et al. 2011; Kjær
et al. 2012; Lobo et al. 2014; Muñoz et al. 2016; Seidel et al. 2024)
and broad sense heritability (Hbs

2= 0.10–0.57) (McKinney
et al. 2011; Stener 2013; Enderle et al. 2015; Seidel et al. 2024).
The set of SNPs can only capture the genomic component of vari-
ation, which given this level of heritability will account for
approximately 50% of the observed variation among trees, even in
managed homogenous field trials. The phenotypes used in this
study represent averages among replicates of the same genotype (or
among siblings) grown in a common garden trial, thereby partly
controlling for environmental effects, and it is encouraging that the
associated SNPs could predict a high fraction of variation in crown
damage scores.

FIGURE 7 | Enrichment analysis of genomic regions comprising

the 10k single nucleotide polymorphisms (SNPs) with highest predictive

ability within the machine learning model for autumn leaf yellowing in

Fraxinus excelsior individuals. Colours represent related functional

groups, as pathways were calculated using a network algorithm (Rosvall

and Bergstrom 2008). Note that blue circles indicate unrelated func-

tional groups. Bubble size represents the magnitude of enrichment for

each functional group. Displayed bubbles have a p≤ 0.05. [Color figure

can be viewed at wileyonlinelibrary.com]
FIGURE 8 | Top 100 SNPs linked to autumn leaf yellowing in

Fraxinus excelsior ranked according to their permutation importance

(PI) from a panel of 3740 SNPs. SNPs are marked according to their

position within a genic region, SNPs within 500 bp of genic regions are

marked ‘Up/Downstream’, SNPs resulting in a coding domain substi-

tution (CDS) are shown in green and the value given in the y axis is

their PI rank with GWAS rank in parentheses. SNPs which cause

missense mutations have functionally annotated coding domains. Per-

mutation importance score is shown in the x axis. [Color figure can be

viewed at wileyonlinelibrary.com]
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Our findings suggest that ash dieback susceptibility is based on
many genes with small effects, which is in line with GWAS
results from Stocks et al. (2019) and Meger et al. (2024). How-
ever, there were no overlapping genes containing predictive or
associated SNPs between this study and those of Stocks et al.
(2019) and Meger et al. (2024). This may be due to geographic
differences or factors such as the age of study trees and different
phenotyping methods, as outlined in the introduction. We
found no overlap between genes associated with crown damage
level and autumn leaf yellowing – two quantitative genetically
correlated traits. Although, this is potentially confounded by the
impact of ash dieback on progression towards senescence; ash
dieback causes defoliation, and therefore, the recording of leaf
senescence (leaf loss in particular) is impacted by ADB
(McKinney et al. 2012; Kirisits and Freinschlag 2012).

Our findings are important in relation to the likely dynamic of
future host‐pathogen interaction, as tolerance controlled by a
single gene or a few genes is more likely to be defeated com-
pared to tolerance based on many genes (Ennos 2015). Despite
the relatively low number of SNPs accounting for a large pro-
portion of susceptibility in comparison to other polygenic traits
identified in GWAS studies, it would take many evolutionary
steps for the pathogen to overcome multiple tolerance loci, each
with a small effect on the phenotype. Surpassing the tolerance
offered by a single SNP would not make a large quantitative
difference to the overall tree phenotype. Combined with recent
results which present evidence that the biology of the pathogen
does not favour selection of high virulence (Kosawang
et al. 2020), and evidence of superior reproductive success of
less susceptible individuals (Semizer‐Cuming et al. 2019, 2021),
this gives some hope for the future of common ash. High
mortality among the current generation is an acute concern but
higher fitness of tolerant individuals, combined with restoration
efforts and breeding programs, will strongly support the con-
tinued existence of F. excelsior in European forests.

Our findings are based on genotypes from several European
trials where the genotypes have been carefully classified as
superior or inferior (in terms of susceptibility to ADB), based on
long‐term monitoring. We used a common protocol in data
collection for the present study; trees with different genetic
backgrounds were evaluated at different ages and sizes, and in
trials with different growth conditions. Phenotypic measures
were quantified as deviation from site average as individual
trees were assessed at different ages and under different growth
conditions. We assume that the average level of genetic toler-
ance is similar at the sample sites, which we consider a rea-
sonable assumption with a recent emerging disease infecting a
naïve host. However, phenology traits may be subject to local
variation which may partly be lost, but this was unavoidable.
Our finding – that we can predict the relative tolerance level of
genotypes grown at different sites across countries and
regions – support the robustness of the genomic predictions.
Therefore, the outcome of the genome‐wide SNP analysis can
be considered a robust prediction of ash dieback susceptibility
across pan Central‐North European F. excelsior populations. It
presents an important step towards understanding the genetic
control of ash tree susceptibility in populations exposed to H.
fraxineus. The results are therefore relevant and representative
of the ash population across most of the disease outbreak area.

4.1 | Genomic Background of Correlation
Between Autumn Leaf Yellowing and ADB
Susceptibility

Our results provide new insight into the intriguing strong
quantitative genetic correlation previously reported from com-
mon garden studies, where early leaf yellowing was linked with
lower levels of susceptibility to ADB (McKinney et al. 2011;
Stener 2013). By assessing phenology and ADB susceptibility
simultaneously, we confirmed the genotypic correlation
between autumn leaf yellowing and ADB susceptibility assessed
as crown damage score (Table 1). Moreover, we compared SNPs
associated with each of the two correlated traits and found that
a relatively small number of SNPs can also predict the genetic
control in autumn leaf yellowing (e.g., adjusted R2 of 33% with
the 100 top ranked SNPs). Functional analysis of these SNPs
revealed their enrichment of plant defence related genes
(Figure 8). Predictive SNPs did not overlap (i.e., the SNPs were
not the same) in the 100 top ranked SNPs in the correlated traits
of ADB crown damage and autumn leaf yellowing. However,
analysis of the molecular functions of the SNP loci suggested
possible pleiotropic effects as for example defence components
were associated with autumn leaf yellowing (Table 2).

4.2 | Functional Analysis of Genes in Correlated
Traits

We searched for SNP variants associated to correlated traits that
offer indications on how trees avoid severe disease, that is, SNPs
within functional regions which code for phenology and defence
related genes. Within the autumn leaf yellowing trait, SNP variants
code for amino acid substitutions in the regulation of flowering and
leaf abscission (CBSX‐1), and a choline transporter like‐1 (CTL‐1)
protein. These genes have homologues in plants which alter the
timing of seasonal growth cycles (Wang et al. 2017; Murai
et al. 2021). It is possible that the substitutions in these amino acids
reflect observed variation in early change in autumn leaf colour as
first reported by McKinney et al. (2011). Genetic correlation
between phenotypic traits can either be a result of essentially the
same genes controlling the traits (pleiotropy) or as a result of
linkage disequilibrium (Lynch and Walsh 1998); in the latter case it
must be explained by the evolutionary history or a bias created
during selection of the tested genotypes.

Correlations between ADB crown damage and autumn leaf
yellowing, together with highly predictive SNPs support the
asynchronous growth theory, that is, trees avoid severe disease
by early leaf abscission (McKinney et al. 2011; Harper
et al. 2016). We did, however, not find a significant genetic
correlation between ADB crown damage and autumn leaf loss,
but as leaf loss is also a symptom of infection by H. fraxineus,
leaf yellowing may be a more robust measure of autumn
senescence, including shedding of leaves. The high level of
genotypic correlation was based on genotypes selected before
they were challenged by the novel pathogen (McKinney
et al. 2011), and therefore selection bias is not likely to be an
important explanation. Early shedding of leaves may create
some level of disease escape, but our results suggest that tree
defences are the major tolerance factor (Figures 3–6 and
Table 2). The data indicated that the two traits were controlled
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by different genes but still presented high genetic correlation.
This suggests that genetic control of susceptibility is due to host
defences and a possible coincidental relationship to autumn leaf
yellowing. However, if the variation in susceptibility among
individuals was caused only by autumn leaf yellowing, then the
top ranked SNPs would be the same in ADB crown damage and
autumn leaf yellowing. The view that active defence against the
spread of the pathogen in host tissue is involved is also sup-
ported by the results from inoculations with H. fraxineus
directly onto branches, where genotypes with low susceptibility
to natural infections also showed limited bark necrosis devel-
opment; furthermore development of necrotic bark lesions oc-
curred much faster in genotypes with high susceptibility
(McKinney et al. 2012), suggesting that an active defence
against the spread of the pathogen is involved. As there is no co‐
evolutionary history between H. fraxineus and common ash, it
is likely to be a broad‐spectrum of defence mechanisms which
limits the impact of H. fraxineus on tolerant ash genotypes.

4.3 | SNPs in PRR Related Genes Are Linked to
ADB Tolerance

Our results further show that standing genetic variation (i.e., the
available allelic variation within a population at a given timepoint
(Barrett and Schluter 2008) within tree defences is linked with
variation in disease severity across the European ash population
(Figure 4). This raises the possibility that individual variation in
tolerance to ADB is mediated by host recognition of molecular
patterns within H. fraxineus. Pattern recognition receptors (PRRs)
are components of the plant defence system, and intriguingly, four
of the six PRR related genes identified from top ranked SNPs are
linked to autumn leaf yellowing. These PRR related genes are
known to stimulate plant defence components (Boutrot and
Zipfel 2017). As leaf yellowing is correlated with ADB crown
damage, it may be evidence of gene pleiotropy (Table 2). As pre-
viously suggested, an active defence is likely to be a key component
of tolerance to ADB, and recognition of pathogen components of
the hemibiotroph H. fraxineus by F. excelsior is a possible mecha-
nism of tolerance to ADB (Lobo et al. 2015; Nielsen et al. 2017;
Mansfield et al. 2018). Here, we provide putative genomic evidence
of ADB tolerance among individuals through pattern triggered
immunity mediated recognition of an external threat and a response
to that threat through defence activation.

5 | Conclusions

This study highlights the genetic architecture and possible
mechanisms involved in the genetic control over ADB crown
damage and phenology traits. The implications of these findings
are: (1) ADB tolerance is polygenic, but a large proportion of the
variance can be predicted by a relatively small number of SNPs
(Figure 4); (2) At the gene level, there is evidence of disease
tolerance via plant defence recognition of H. fraxineus; (3) Phe-
nological avoidance of severe disease is a component of tolerance,
especially as it is correlated with ADB crown damage. However, a
previous study showed that direct inoculation with H. fraxineus
and the resultant defence response is responsible for individual
variation to the pathogen (Lobo et al. 2015).

Our findings highlight that ADB susceptibility is determined
by combinations of polygenic traits. When assessing crown
damage levels, we see the combined effect of different
mechanisms, that is, disease tolerance (host trees limiting
the growth of the pathogen) and disease escape (autumn leaf
yellowing, as a proxy for senescence) but possibly also other
mechanisms. A tree that is not able to limit the growth of
the pathogen (i.e., potentially showing low tolerance) might
still be able to escape the disease due to early senescence (as
indicated by autumn leaf yellowing) leading to premature
leaf shed or perhaps pathogen growth is inhibited in yellow
leaves, and hence might show limited crown damage. This
emphasises the difficulty in identifying relevant genes in
GWAS using crown damage levels or tree health as pheno-
typic traits. In the future, a better understanding of the
molecular defence mechanisms in ash trees in response to
the pathogen are needed. One way to approach this might be
to target more specific traits, e.g. necrosis length after con-
trolled inoculations might provide a better estimate of dis-
ease tolerance which is not confounded with disease escape.
However, in the end the complex interplay of different
mechanisms determines the survival of ash trees.
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