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Abstract Dissolved organic carbon (DOC) concen-

trations have risen in upland waters across large areas

of Europe and North America. Two proposed drivers

of these increases are (1) deposition of atmospheric

pollutant nitrogen (N) with consequent effects on

plant and decomposer carbon dynamics, and (2) soil

recovery from acidification associated with decreas-

ing sulphur deposition. Examination of 12 European

and North American field N addition experiments

showed inconsistent (positive, neutral, and negative)

responses of DOC to N addition. However, responses

were linked to the form of N added and to resulting

changes in soil acidity. Sodium nitrate additions

consistently increased DOC, whereas ammonium

salts additions usually decreased DOC. Leachate

chemistry was used to calculate an index of ‘‘ANC

forcing’’ of the effect of fertilization on the acid-base

balance, which showed that DOC increased in

response to all de-acidifying N additions, and

decreased in response to all but three acidifying N

additions. Exceptions occurred at two sites where N

additions caused tree mortality, and one experiment

located on an older, unglaciated soil with high anion

adsorption capacity. We conclude that collectively

these experiments do not provide clear support for the

role of N deposition as the sole driver of rising DOC,

but are largely consistent with an acidity-change

mechanism. It is however possible that the unin-

tended effect of acidity change on DOC mobility

masks genuine effects of experimental N enrichment

on DOC production and degradation. We suggest that

there is a need, more generally, for interpretation of N

manipulation experiments to take account of the

effects that experimentally-induced changes in
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acidity, rather than elevated N per se, may have on

ecosystem biogeochemistry.

Keywords Nitrogen � Acidity � ANC Forcing �
Atmospheric deposition � Dissolved organic carbon �
Manipulation experiments

Introduction

Dissolved organic carbon (DOC) is the major form in

which carbon (C) is cycled within soils. Net ecosys-

tem loss of DOC depends on the balance between

processes releasing DOC into solution, such as

microbial decomposition, root exudation, litter leach-

ing and desorption; and those such as bacterial

consumption and adsorption which remove it (e.g.

Kalbitz et al. 2000; Neff and Asner 2001). In peaty

soils, fluvial DOC export can represent a significant

term in the ecosystem C budget, comparable to net

ecosystem CO2 exchange (Billett et al. 2004). In the

last two decades, DOC concentrations have increased

in many natural waters, with concentrations doubling

in some lakes and rivers in the United Kingdom and

United States since the late 1980s (Evans et al. 2005;

Findlay 2005). The phenomenon of rising DOC

appears to be extensive, with increases reported

throughout most of the UK (e.g. Worrall et al.

2004a), parts of Central Europe (Hejzlar et al. 2003;

Kopáček et al. 2006), Southern Scandinavia (Skjelk-

våle et al. 2005; Vuorenmaa et al. 2006), and the

northeastern United States (e.g. Driscoll et al. 2003;

Stoddard et al. 2003; Findlay 2005).

Such large-scale changes have generated wide-

spread speculation as to likely causes. Proposed

mechanisms include increased decomposition rates

in organic soils due to rising temperatures (Freeman

et al. 2001); hydrological changes including increased

flow through shallow organic horizons (Hongve et al.

2004); shorter lake residence times (Schindler et al.

1992; Curtis 1998); increased frequency and severity

of droughts (Worrall et al. 2004b); fluctuations in solar

radiation (Hudson et al. 2003); increased DOC

production under elevated atmospheric CO2 (Freeman

et al. 2004); changes in ecosystem production and

decomposition mediated by chronic N deposition

(Pregitzer et al. 2004; Findlay 2005); and increased

solubility of humic acids due to recovery from

acidification (Evans et al. 2006a). Although evidence

exists to suggest that all these mechanisms can

influence DOC, the spatial extent of increases favours

a common, large-scale driver affecting DOC delivery

to both lakes and streams. This argues against

hydrological factors that do not operate consistently

at these scales, and mechanisms only affecting lakes.

Temperature and atmospheric CO2 increases, whilst

operating at large scales, may not be of sufficient

magnitude to explain the bulk of observed DOC

increases (Evans et al. 2006a).

Here, we address two mechanisms linked to the

deposition of atmospheric pollutants: (1) ecosystem

response to chronic nitrogen (N) deposition, and (2)

recovery from declining sulphur (S) deposition. The

first hypothesis proposes that N deposition could

impact on DOC leaching through mechanisms affect-

ing either its production or subsequent decomposition.

Because N typically limits productivity in terrestrial

ecosystems (Vitousek and Howarth 1991), increased

net ecosystem productivity due to N deposition may

simply increase the pool of ecosystem C available for

leaching. However, effects of elevated N on decom-

position are complex. Aber (1992) suggested that

elevated N supply would increase demand for labile C

as a substrate for N immobilisation, reducing DOC

leaching. However, this hypothesis was not supported

by results from forest N manipulation experiments

(Gundersen et al. 1998; McDowell et al. 1998; Aber

et al. 1998). The effect of N on decomposition appears

to depend on substrate quality: increased N availability

increases activity of cellulose-degrading enzymes such

as b-glucosidase, but suppresses lignin-degrading

enzymes such as phenol oxidase (Fog 1988; Berg and

Matzner 1997; Waldrop et al. 2004). DOC losses will

further depend on the balance of DOC production

(from litter/soil organic matter decomposition or root

exudates), and subsequent decomposition of that DOC

to CO2. Zech et al. (1994) suggested that suppression of

lignin-degrading enzymes by excess N could increase

leaching of recalcitrant DOC compounds as interme-

diate decomposition products.

The hypothesis that N deposition will increase

DOC leaching was supported by forest experiments

in Michigan (Pregitzer et al. 2004) where DOC

leaching increased markedly following sodium nitrate

additions. Findlay (2005) suggested cumulative N

deposition as a possible explanation for DOC

increases in the Hudson River, New York. A study
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of peat cores collected across a European N deposi-

tion gradient by Bragazza et al. (2006) also showed

greater DOC release from high N-deposition sites,

attributed to a combination of alleviation of N

constraints on microbial activity and reduced produc-

tion of inhibitory polyphenol compounds by

Sphagnum. On the other hand, Worrall et al. (2006)

concluded, based on analysis of monitoring data, that N

inputs and DOC outputs appeared unrelated. Thus,

there are several plausible mechanisms by which N

may affect DOC availability in soils, but field obser-

vations do not uniformly support a simple linkage.

The second hypothesis suggests that declining S

deposition has, by reducing soil solution acidity and

ionic strength, increased the solubility of (weakly

acidic) organic compounds in the soil (Evans et al.

2006a; Monteith et al. 2007). This theory reprises a

hypothesis by Krug and Frink (1983), who argued that

increases in mineral acid inputs would be buffered by

decreasing mobility of organic acids. Although this

mechanism was insufficient to prevent surface water

acidification in response to acid deposition, the funda-

mental mechanisms by which acidity and ionic

strength influence organic acid solubility are well

established, with laboratory studies showing consis-

tently greater DOC leaching at higher pH (Whitehead

et al. 1981; Hay et al. 1985; Tipping and Hurley 1988;

Tipping and Woof 1990; Kennedy et al. 1996). Field

studies are less consistent, although some experiments

have shown reduced DOC in response to artificial

acidification (Cronan and Aiken 1985; Schindler et al.

1997). In the HUMEX catchment acidification exper-

iment, Norway, DOC decreased in organic soil

solution (Vogt et al. 1994), but not in the lake draining

the site (Hessen et al. 1997). Experimental addition of

aluminium chloride to a forest soil led to both

acidification and strongly reduced soil solution DOC

concentrations (Mulder et al. 2001), while Clark et al.

(2005) showed reduced peat DOC leaching during

natural acidic sulphate flushes. With atmospheric S

deposition now declining across much of Europe and

North America (Fowler et al. 2007), leading to reduced

soil and water acidity (Evans et al. 2001; Skjelkvåle

et al. 2005), the reverse process (increasing DOC in

response to declining acidity) would be predicted. A

recent trend analysis by Monteith et al. (2007) showed

that upward trends in DOC are spatially correlated with

downward trends in sulphate (SO4
2-) concentrations

across large areas of Europe and North America.

The influence of N deposition on DOC leaching is

more difficult to assess from monitoring data alone

because: (i) N deposition is not changing with the

same magnitude or consistency as S deposition; (ii)

most deposited N is retained within forest and

moorland ecosystems (e.g., Nadelhoffer et al. 1999;

MacDonald et al. 2002; Aber et al. 2003); (iii) nitrate

(NO3
-) concentrations in soil and surface waters

rarely demonstrate the upward trends expected in

response to progressive N saturation (e.g. Wright et al.

2001; Goodale et al. 2003; Stoddard et al. 2003); and

(iv) internal ecosystem N cycling generally far

exceeds the magnitude of input and output fluxes,

such that short-term relationships are difficult or

impossible to discern (Cooper 2005). Nevertheless,

N deposition levels are well above background levels

in many regions, most ecosystems are accumulating N

in the long term, and an N-related mechanism for DOC

increases in those same regions thus appears plausible.

Given widespread concern about the potential adverse

effects of chronic N deposition on terrestrial ecosys-

tems (Aber et al. 1989, 1998; Stoddard 1994), multiple

N manipulation experiments have been undertaken.

Many of these studies also measured DOC, providing

an opportunity to test of the role of N as a driver of

increasing freshwater DOC. In general, the response of

DOC to N additions has been a secondary focus of

these studies, and in some cases not all DOC

measurements have been published.

Here, we used published and some unpublished

measurements from 12 long-term fertilisation studies

to identify the roles of N amendment and acidificat-

ion status as controls on ecosystem DOC loss. If N

addition or ionic strength drive DOC loss, DOC

should have increased in most fertilisation studies. If

acidification status drives DOC loss, DOC should

have increased or decreased depending on whether

the form of N added increased or decreased soil

acidity. We tested these alternative responses with

measurements of changes in leachate DOC and an

index of fertilisation-induced changes in acid neu-

tralising capacity (ANC) across all studies.

Methods

We reviewed data for 12 plot- or catchment-scale

field N manipulation studies, spanning a range of soil

and vegetation types across northern Europe and the
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northeastern USA. Some of these experiments

involve applications of more than one N form, or

applications to more than one vegetation type, so in

total 17 experiments were analysed (Table 1). Rep-

licated N additions to four locations in Michigan

(Pregitzer et al. 2004) have largely been reported in

terms of mean response and were therefore treated as

a single experiment. Other N fertilisation experiments

at Fernow (Adams et al. 2006), Mt. Ascutney

(McNulty et al. 2005), Catskill Mountains (Templer

et al. 2005) and Niwot Ridge (Bowman et al. 2006) in

America, and several NITREX experimental sites in

Europe, could not be included as DOC was either not

measured or not reported. Field N exclusion studies

were also excluded, due to the difficulty of quanti-

fying or controlling N inputs; uncertainty over the

effects of removing inexact amounts of reduced and

oxidised N (plus other ions in deposition) on acidity;

and the impacts of roofs on internal C cycling (e.g.

rapid leaching losses from fresh litter deposited on

below-canopy roofs).

For each experiment considered, we collated

information on (1) the form, level and duration of

N additions; (2) ecosystem response in terms of N

leaching; (3) changes, if any, in acidity; and (4)

changes, if any, in DOC leaching. Unless otherwise

stated, soil organic horizon soil solution was mea-

sured by zero-tension lysimeters, and mineral horizon

soil solution by suction samplers. Chemical analysis

methods are described in source references for each

site (Table 1 and results section), and considered

fully comparable between sites. Given variability in

the type and availability of data from each experi-

ment, it was not possible to undertake a systematic

statistical analyses of experimental responses across

all sites. Insofar as possible, interpretation has been

based on previous published analyses for that site.

The net effects of the experimental treatments on

soil solution ANC was defined by the charge balance

of major base cations and acid anions in soil solution:

ANC ¼ Ca2þ þMg2þ þ Naþ þ Kþ þ NHþ4 � SO2�
4

� Cl� � NO�3

ð1Þ
The approximate acidifying/de-acidifying impact

of each N addition depends on (1) the amount of

added N leached as either NO3
- or NH4

?; and (2) the

amount of any (N-free) counter ion (variously Na?,

SO4
2- or Cl-) also leached. There may be no impact

on acidity if all added N is retained and no other ions

are applied. In most experiments that apply NH4
? (as

(NH4)2SO4, NH4Cl and NH4NO3), NH4
? is either

retained or nitrified to NO3
-, a process which

releases two moles H? per mole NH4
? nitrified and

allows NO3
- loss to leaching (exceptions can occur

in peats, where NH4 may remain in solution).

Leaching of added SO4
2-, Cl- or NO3

- (added

directly, or indirectly as nitrified NH4
?) will, accord-

ing to the mobile anion concept (Reuss and Johnson

1985) also cause the leaching of some combination of

base cations or acid cations (i.e. H? and Aln?).

Therefore, any NH4
? addition to an ecosystem that is

not fully N-retaining should be acidifying. In con-

trast, experiments where N has been added as NO3
-,

with Na? as a counter-ion, are likely to be de-

acidifying unless 100% of the NO3
- is leached. This

occurs because Na? is normally mobile, whereas a

large proportion of the NO3
- is usually retained. This

excess of base cation over acid anion leaching is

likely (following the charge balance definition) to

raise leachate ANC and reduce H? and Aln?

concentrations. Gaseous ammonia (NH3) input will

also tend to initially raise the pH, by consuming H?

ions to form NH4
? (although this effect will be

reversed if subsequent nitrification occurs).

As a simple, robust measure of the acidifying/de-

acidifying impact of each N addition experiment, the

charge balance definition of ANC (Eq. 1) was

adapted to define ‘ANC forcing’, an indication of

the base cation—acid anion imbalance in the system

induced by the experimental treatment, which

accounts for retention of the added ions within the

system:

ANC forcing ¼ DNHþ4 � DNO�3 þ DNaþð Þ
� DSO2�

4

� �
� DCl�ð Þ ð2Þ

‘DX’ represents the difference in the concentration

of ion X (in leq l-1) between the treatment and the

control. Terms in parentheses are only included in the

equation where those ions have been added in

the experiment. A positive value indicates that the

treatment is likely to have increased ANC and pH, a

negative value that it is likely to have decreased

them. The equation is best considered as an index of

potential ANC change, in that it does not indicate

what proportion of this experimentally-induced ion

16 Biogeochemistry (2008) 91:13–35
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imbalance has subsequently been buffered by

changes in base cations, versus changes in acid

cations. As it is based on leachate/runoff chemistry,

the equation implicitly takes account of any ecosys-

tem N retention, N transformations, and also any

retention of applied Na?, SO4
2- or Cl-.

All experimental additions were assumed to have

increased ionic strength, in approximate proportion to

the total N addition. While this assumption could

theoretically be violated, if addition of mono-valent

ions were to cause a reduction in di- or tri-valent ion

concentrations (e.g. reduction in Al3? under less acid

conditions), calculations for the Aber Forest dataset

indicated that soil solution ionic strength consistently

increased under both NH4NO3 and NaNO3 additions

(data not shown).

Results

For eight field N-addition studies (Pwllpeiran, Rua-

bon, Aber, Whim, Gårdsjön, Bear Brook, IES and

Solling), previously unpublished or re-analysed data

are presented. For four studies (Harvard Forest,

Michigan, Experimental Lakes Area, Åmli), data

have been extracted from published literature. The 17

individual experiments span plot and catchment

manipulations; a range of soils (peats to mineral

soils); five vegetation types (bog, heathland, grass-

land, broadleaf and coniferous forest); different levels

of N addition and duration; and five forms of N

addition. Across this heterogeneous dataset, N addi-

tion invariably led to increased N leaching, at least at

the highest dosage rate (Table 2). However DOC did

not respond consistently: based on the best estimate

of DOC leaving the system (streams in catchment

experiments, lowest sampled horizon in plot exper-

iments) and the highest rate of N addition applied,

DOC concentrations increased in nine experiments,

and decreased in eight (Table 2). Treatment effects

on pH and ANC forcing varied predictably in relation

to the form of N added: NH4NO3, (NH4)2SO4, NH4Cl

additions were all acidifying, NaNO3 and gaseous

NH3 additions were de-acidifying. We found no

evidence that the chemical responses of streams in

whole catchment manipulations differed substan-

tively from those of soil solutions in plot

experiments, so the two data types were analysed

together.

Our initial observations suggest that N addition

does not consistently affect DOC loss, but that there

is a relationship between DOC changes, the form of

N added, and the associated acidity change (Table 2).

However, given the heterogeneity and complexity of

the datasets collated, experimental responses are first

examined in detail at individual sites, prior to a final

synthesis of results.

Pwllpeiran, Mid Wales, UK (NaNO3, NH4NO3)

Pwllpeiran, an acidic grassland on peaty podzolic soils,

has received N in solution as NaNO3 (20 kg N ha-1 -

year-1) and (NH4)2SO4 (10 and 20 kg N ha-1 year-1)

since 1997 (Emmett et al. 2001). The experiment is

replicated for low- and high-intensity grazing regimes.

The high-grazing treatment has substantially altered soil

and vegetation C and N cycling (Emmett et al. 2001),

and we therefore only consider observations from the

low-grazing plots. Mineral soil solution was also

strongly affected by lateral flow from above the

treatment plots, so we analysed for the O horizon.

Two full years of post-treatment data were available,

1998–1999.

Responses to the (relatively low) N doses are small

but clear, and dependent on the form of N added

(Fig. 1). Mean ANC forcing associated with NaNO3

treatment was ?40 leq l-1, and mean pH for 1998–

1999 in these plots was 4.48, versus 4.28 in the

control plots. Because pH in pre-treatment samples

was higher in the NaNO3-amended plots than in the

controls (4.31 vs. 4.15), it is uncertain to what extent

later pH differences can be attributed to treatment,

rather than between-plot heterogeneity. Mean DOC

concentration in the NaNO3 plots was 14.2 mg l-1,

versus 12.9 mg l-1 in the control plots. DOC con-

centrations in the NaNO3 plots were actually slightly

lower than controls in the pre-treatment samples, so

this is considered a likely treatment response, albeit

small. In the 20 kg N ha-1 year-1 (NH4)2SO4 treat-

ment, mean ANC forcing was -32 leq l-1, pH was

0.1 unit lower than the controls (having started at

similar values), and DOC was 2 mg l-1 lower at

10.9 mg l-1.

Ruabon, North Wales, UK (NH4NO3)

At Ruabon, a managed Calluna heathland on peaty

podzols, NH4NO3 solution has been applied at 40, 80
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and 120 kg N ha-1 year-1 since 1989. Analysis of O

horizon leachate after 10 years (Pilkington et al.

2005a, b) showed high N retention, but NO3
-

concentrations increased significantly from 3 leq l-1

in the controls to 37 leq l-1 under the highest

treatment. Mineral (E) horizon leachate showed

smaller, but still significant, increases in NO3
- (0.5–

17 leq l-1). N addition led to significant pH reduc-

tions in both horizons, and increased Al

concentrations in the E horizon. ANC forcing,

calculated from the data of Pilkington et al.

(2005a), was negative but small in both horizons (O

horizon -13 leq l-1, E horizon -16 leq l-1 in the

highest treatment).

DOC was not measured in the study above, but has

been measured on O horizon samples in parallel

treatment plots which have received NH4NO3 addi-

tions of 10, 20, 40 and 120 kg N ha-1 year-1 since

1998. Although all treated plots are on average more

acid than the controls, there is no clear relationship

between treatment level and pH (Fig. 2). Similarly,

DOC concentrations do not relate strongly to treat-

ment level, but are on average lower in all treatments

than in the control plots. Treatment mean DOC and

pH are positively correlated (Fig. 2; R2 = 0.80,

P = 0.042), although this becomes non-significant

if individual plot data are analysed.

Aber Forest, North Wales, UK (NaNO3,

NH4NO3)

The Aber experiment was located in a Sitka spruce

plantation on peaty podzols (Emmett et al. 1995,

1998). NH4NO3 (35 kg N ha-1 year-1) and NaNO3

(35 and 75 kg N ha-1 year-1) solutions were applied

below-canopy from 1991 to 1995. NO3
- addition led

to a rapid, near 1:1 increase in NO3
- leaching
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whereas NH4
? was largely retained, leading to soil

acidification under the NH4NO3 treatment (Emmett

et al. 1998). No clear DOC responses were recorded.

We re-analysed soil solution data from the last two

full years of measurement, for both O and B horizons

(Fig. 3). The NH4NO3 treatment was associated with

a strong negative ANC forcing in both horizons, and

lower O horizon pH. This pH response was absent in

the B horizon, but mean Al concentrations were

elevated (95 vs. 72 lg l-1). Addition of NaNO3 had

less effect on the acid-base balance than in other

experiments due to the very low NO3
- retention; ANC

forcing was slightly positive at both dosage levels in

the O horizon, but only positive in the B horizon

under the larger (75 kg N ha-1 year-1) NaNO3 treat-

ment. The pH of O horizon leachate was elevated at

both dosage levels, but again this difference was

absent in the less acid B horizon.

DOC concentrations were much higher in the O

than the B horizon (control plot means 42 and

6 mg l-1 respectively), indicating strong DOC reten-

tion between horizons. DOC concentrations in the

NH4NO3 addition plots were 9% lower than controls

in the O horizon, and 44% lower in the B horizon

(Fig. 3f, l). This is consistent with an effect of

acidity, and possibly Al, on DOC solubility during

transit through the mineral soil (Kennedy et al. 1996).

NaNO3 additions had no clear or consistent impact on

DOC in either horizon, although the rank of mean

DOC across all the three treatments and both horizons

did correspond to that for ANC forcing.

Whim Bog, Southeast Scotland, UK (NaNO3,

NH4Cl, gaseous NH3)

Whim, a lowland raised bog with dwarf shrub species

and Eriophorum over a Sphagnum layer (Sheppard

et al., 2004), has received multiple treatments since

2002: NaNO3 solution at 8, 24 and 56 kg N ha-1 -

year-1; NH4Cl solution at the same rates; and

gaseous NH3 via a release system which exposes a

downwind transect to dry NH3 deposition. Measured

near-source deposition is 70 kg N ha-1 year-1,

decreasing towards ambient levels at a distance of

105 m. Close to the NH3 source, significant die-back

of Calluna vulgaris, Sphagnum and other mosses has

occurred, whilst other dwarf shrub species have

increased in cover. Peat solution has been sampled

with suction samplers at 5–10 cm since 2006.

Results show divergent chemical responses to

different N forms. Wet NH4Cl additions have had little

impact, with mean pH and DOC concentrations

remaining similar to controls in all treatments (Fig. 4a).

Wet NaNO3 addition has increased pH and DOC

leaching at two treatment levels (8 and 56 kg N ha-1

year-1). Exposure to gaseous NH3 (effectively, NH4OH

deposition) has raised pH, and DOC concentrations

have more than doubled close to the NH3 source,

declining gradually to ambient concentrations along the

transect. Combining all control and treatment plot data

reveals a highly significant correlation (R2 = 0.72,

p \ 0.001) between mean soil solution DOC and mean

soil pH (measured in water) at the same location. ANC

forcing values show a similar pattern (Fig. 4b), with

positive mean values in eight out of ten samplers along

the NH3 transect (highest value adjacent to source

?410 leq l-1); positive values for all three NaNO3

treatment levels (?122 leq l-1 in the highest treat-

ment); negative values in all three NH4Cl treatments

(-145 leq l-1 in the highest treatment); and a signif-

icant overall correlation (R2 = 0.60, p \ 0.001)

between DOC and ANC forcing.

Gårdsjön, Southern Sweden (NH4NO3)

At Gårdsjön, NH4NO3 solution has been added to a

Norway spruce-dominated catchment at 40 kg N

ha-1 year-1 since 1991 (Moldan et al. 2006). Stream

NO3
- concentrations were near-zero prior to the

experiment, and remain low in the nearby reference

catchment, but have risen progressively since N

additions began in the treated catchment (Moldan

et al. 2006; Fig. 5). Mineralisation and nitrification

rates, and foliage and litter N content, have all

increased (Kjønaas et al. 1998). Interpretation of

acidity responses to N additions at Gårdsjön is

complicated by large decreases in ambient S deposi-

tion, which have led to recovery from acidification in

both reference and treatment catchments. Furthermore,

the treatment catchment was more acid than the

reference even before N additions began (Fig. 5c).

However, time series data suggest that pH recovery has

been greater in the reference catchment, whereas

recovery levelled off or even reversed at the treated

catchment following the onset of NO3
- leaching in the

early 1990s. There has been a clear, increasingly

negative ANC forcing associated with rising NO3
-

leaching.
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After 15 years of treatment, DOC concentrations

show some divergence between treatment and reference

catchments (Fig. 5d). As mean DOC concentrations

also differed between catchments at the start of the

experiment, they have been re-expressed in standardised

form (subtracting the mean of the first 5 years, and
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Fig. 5 Gårdsjön experiment mean runoff chemistry in treatment and reference catchments, 1990–2005
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dividing by the standard deviation for the same period,

Fig. 5f), which more clearly illustrates the relative DOC

increase in the reference catchment. For 2001–2005,

standardised DOC concentrations have been signifi-

cantly higher in the reference catchment (two sample t-

test, p \ 0.001), and we estimate that, due to NH4NO3

addition, DOC concentrations are 2.6 mg l-1 (13%)

lower than they would have been under ambient

conditions. Applying the same approach to 2001–2005

H? concentrations suggest that mean treatment catch-

ment runoff pH would have been 4.01 under ambient

conditions, compared to an observed mean of 3.91.

Bear Brook, Maine, USA ((NH4)2SO4)

The Bear Brook study comprises two adjacent

broadleaf-dominated catchments, one of which has

received 25 kg N ha-1 year-1 as dry (NH4)2SO4

since 1989 (Norton et al. 1999a). Concentrations of

NO3
-, SO4

2-, H? and Al have all increased, whilst

pH and HCO3
- have decreased (Norton et al. 1999b;

Norton et al. 2004). Catchment retention of added N

decreased from 96% to 81%, and retention of added S

from 86% to 34%, by 1994 (Kahl et al. 1999).

Internal N cycling has accelerated (Jefts et al. 2004),

and tree foliar N concentrations have increased (Elvir

et al. 2005). (NH4)2SO4 addition has thus led to both

ecosystem N enrichment and acidification.

Bear Brook data to 2003 (Fig. 6) suggest pH has

been fairly stable since the mid-1990s, consistent

with calculated ANC forcing. DOC concentrations in

the streams are fairly low (2.7 mg l-1 in both

catchments prior to treatment). David et al. (1999)

reported no clear DOC changes up to 1994, but noted

lower concentrations in the treated catchment in

1995, and a more pronounced decrease in organic

acid concentrations. The longer dataset shows recent

upward trends in DOC at both catchments, but a

small, sustained relative reduction in DOC concen-

trations in the treated catchment. For the full

treatment period, average DOC in the treated catch-

ment was 0.35 mg l-1 (16%) lower than in the

reference catchment.

Millbrook, New York, USA (NH4NO3)

The Millbrook (IES) experiments comprise six paired

20 m diameter plots in oak-dominated hardwood

stands on silty loam with a thin O horizon (Wallace

et al. 2007). In each pair, one plot received

100 kg N ha-1 year-1 NH4NO3 from 1996 to 1999,

reducing to 50 kg N ha-1 year-1 thereafter. In B

horizon soil solution, sampled 2005–2006, treatment

plot mean NO3
- was 106 lmol l-1, versus 1 lmol l-1

in the controls. NH4
? was \2 lmol l-1 in all plots.

Mean pH was slightly lower in the treatment plots

(4.68) compared to controls (4.77), mean ANC forcing

across all plots was -105 lmol l-1. Mean DOC was

2.3 mg l-1 in the controls and 2.5 mg l-1 in the treated

plots, but responses were highly variable, ranging from

a 25% DOC decrease versus control in one of the paired

plots to a 71% DOC increase in another pair.

At the IES experiments, N addition has led to tree

mortality (Wallace et al. 2007). It appears that

elevated N inputs led to slightly increased growth

of some trees (fertilisation effect) but killed others (N

saturation effect), with overall mortality of 35% of

trees in treatment plots, compared to 2% in control

plots. Mortality rates were highly variable among

treatment plots, and examination of % DOC change

for each treatment-control pair against % dead basal

area shows a strong relationship (Fig. 7, R2 = 0.79,

p = 0.019). In plots with little mortality, DOC

decreased in response to NH4NO3 addition, and

DOC only increased in plots where [20% mortality

occurred.

Solling, Northwest Germany ((NH4)2SO4)

At Solling, 140 kg N ha-1 year-1 (NH4)2SO4 were

applied to a mature beech stand on acid brown

mineral soils from 1983 to 1993 (Meesenburg et al.

2004). Unlike all the other experiments described,

soils at Solling were not glaciated and have a high

anion adsorption capacity. In the first 3 years of

addition, 100% of added S was retained in the soil,

declining to 12% in 1992, after which the soils

became a net SO4
2- source (Meesenburg et al. 2004).

N leaching, already high before the experiment, rose

further (Fig. 8), and over 1983–1996 around half of

all N additions were exported, predominantly as

NO3
-. ANC forcing associated with the elevated NO3

-

and SO4
2- leaching averaged -3,300 leq l-1 at

10 cm during 1990–1993, and -2,400 leq l-1 at

100 cm. Soil water pH decreased from 4.1 to 3.5

at 10 cm, and from 4.5 to 4.1 at 100 cm. Foliar % N

increased significantly with treatment, while NH4
?
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and NO3
- immobilisation rates decreased (Meiwes

et al. 1998; Corre et al. 2003).

At 10 cm, DOC in soil solution was unchanged

after a decade of (NH4)2SO4 addition (1990–1993

treatment mean 24.8 mg l-1, control mean

24.0 mg l-1). At 100 cm, however, large DOC

increases were recorded (1990–1993 treatment mean

7.8 mg l-1, control mean 2.9 mg l-1). This increase,

coincident with a large pH decrease, contrasts

strongly with results from the other experiments

presented.

Harvard Forest, Massachusetts, USA (NH4NO3)

The Harvard Forest experiment comprises 50 and

150 kg N ha-1 year-1 additions of NH4NO3, since

1988, to a mixed hardwood stand and a red pine
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Fig. 6 Bear Brook experiment mean runoff chemistry in treatment and reference catchments, 1989–2003
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stand. Magill et al. (2004) report rapid increases in

dissolved inorganic N (predominantly NO3
-) leach-

ing in the high-N pine stand; smaller, delayed

increases at the high-N hardwood and low-N pine

stands; and near-zero concentrations in both control

stands and the low-N hardwood stand. Venterea et al.

(2003) measured significant, and very large, treat-

ment-induced soil pH decreases in both hardwood

and pine stands (H? increase[1,400 leq l-1 in both

O horizons). Based on data reported by McDowell

et al (2004) and Magill et al. (2004), ANC forcing is

approximately -300 leq l-1 beneath the litter layer

in both high-N plots and in the mineral soil of the

high-N hardwood plots, and -1,000 leq l-1 in the

mineral soil in the pine high-N plot (Table 2).

Biomass and litter N content increased and, as at

the IES experiment, tree mortality increased with

both high-N treatments and was particularly severe in

the high-N pine plots (Magill et al. 2004).

McDowell et al. (2004) report no change in DOC

leaching below from the forest floor and a substantial

(but non-significant) DOC increase beneath the pine
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Fig. 8 Solling experiment annual mean inorganic N concentration, ANC forcing and DOC at two depths, 1982–1996
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high-N plots. Increases were also recorded in the

biodegradable fraction of DOC (Yano et al. 2000).

Frey et al. (2004) observed a decrease in phenol

oxidase enzyme production. McDowell et al. (2004)

suggest that this, together with tree mortality in the

pine stand, should have decreased DOC production,

and that other processes must counterbalance these

decreases. Both they and Yano et al. (2000) suggest

that abiotic controls may influence DOC loss. Magill

et al. (2004) reported unchanged DOC in mineral soil

solution, although the data presented (their Fig. 2) do

suggest a decrease in DOC with N addition beyond

the error range shown in the hardwood stand, from

around 21 mg l-1 in the control plots to around

15 mg l-1 in the high-N plots. This would represent a

29% reduction in DOC leaching from the hardwood

ecosystem, consistent with observed acidification.

The lack of a DOC response in the pine stand cannot

be directly explained by either an N-enrichment or an

acidification mechanism.

Michigan experiments, USA (NaNO3)

NaNO3 has been applied at 30 kg N ha-1 year-1 to

replicated plots in four sugar maple-dominated hard-

wood stands (A, B, C, D) in Michigan since 1994

(Pregitzer et al. 2004; Zak et al. 2006). After 9 years

of treatment, Pregitzer et al. (2004) reported a

twenty-fold increase in soil solution NO3
- concen-

trations relative to controls, while DOC increased by

a factor of 2.3. By 2004, DOC in the NaNO3 plots

averaged 18.51 versus 6.6 mg l-1 in the controls

(Smemo et al. 2007). Interpretation has focused on

biological responses, including inhibition of lignino-

lytic activity (Pregitzer et al. 2004; Waldrop and Zak

2006; Smemo et al. 2007). Smemo et al. (2007) found

increased polyphenolic and aromatic content of DOC

leached from the NaNO3 plots relative to controls.

Pregitzer et al. (2004), based on column leaching

experiments, concluded that increased DOC losses

were not due to ionic strength effects on DOC

desorption, but Smemo et al. (2006), finding no

change in DOC production from fresh litter, sug-

gested that NaNO3 addition has reduced the abiotic

sink for DOC in the mineral soil.

Data presented by Pregitzer et al (2004) indicate

mean NO3
- for the last 5 years was around 370

versus 10 leq l-1 in the controls (their Fig. 2). NH4
?

concentrations were unchanged. Leaching of Na?

was not reported, but given the importance of N as a

nutrient, retention of NO3
- is likely to greatly exceed

retention of Na?, which is biologically and chemi-

cally unreactive. If no Na? were retained,

concentrations would increase by 1,000 leq l-1,

giving an ANC forcing of ?630 leq l-1. This

estimate is obviously uncertain in the absence of

reported Na? data, and may well be an overestimate,

but nonetheless it seems probable that NaNO3

additions have had a substantial positive impact on

ANC. Smemo et al. (2007) report a small overall

increase in the mean pH of mineral horizon soil water

in the NaNO3 plots (6.07) relative to controls (5.93),

consistent with a pH effect on DOC sorption. They do

not report complete pH data, but indicate that the

stand with the largest DOC difference (stand B) had

higher pH in the control (6.30) than the paired

NaNO3 plot (5.77), concluding therefore that chang-

ing pH could not be responsible for the DOC increase

at this site. Pregitzer et al. (2007) report that this same

stand had almost double the organic C content in the

top 10 cm of the NaNO3 plot, relative to the control

(differences in other stands were much smaller), thus

differences in DOC production between treatment

and control plots at this stand (whether due to

treatment or inherent plot variability) appear to

outweigh any effects of NaNO3-induced acidity

change on subsequent DOC retention.

Åmli, Southern Norway (NH4NO3)

Åmli, a Scots pine forest, received 30 and

90 kg N ha-1 year-1 as NH4NO3 from 1990. Soil

solution measurements from 1997–1999 (Vestgarden

et al. 2001) showed significant increases in mean

NO3
- between control and high-N treatment plots,

from 1 to 136 lmol l-1 in the O horizon, and 1 to

270 lmol l-1 in the B horizon. Changes in NH4
?

were smaller (O horizon 18–76 lmol l-1, B horizon

8–106 lmol l-1). Overall, treatment reduced N reten-

tion from [90 to 63%; tree growth and litterfall

doubled; soil C/N decreased in both horizons; B

horizon H? and Al concentrations increased; and pH

reduced by 0.5–1 units (Vestgarden et al. 2001,

2004).

DOC concentrations were significantly, and dra-

matically, lower in the B horizon under both levels of

N addition (\4 vs. 43 mg l-1 in controls). O horizon

concentrations were also much lower (\40 vs.
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80 mg l-1), but differences were reported non-sig-

nificant (Vestgarden et al. 2001). The authors

attributed DOC reductions to increased microbial

DOC consumption, although down-profile decreases

in DOC (in both control and treated plots) were

attributed primarily to abiotic factors.

Experimental Lakes Area, Northwest Ontario,

Canada (NaNO3)

An ephemeral stream catchment in the Experimental

Lakes Area, comprising bedrock outcrops and conifer

‘forest islands’ with up to 50 cm soil, was fertilised

from April 1995 to August 1996 with 40 kg N ha-1

year-1 as NaNO3 (Lamontagne and Schiff 1999).

NO3
- concentrations increased rapidly from

1 lmol l-1 (pre-treatment, and in two reference

catchments) to around 100 lmol l-1. Stream pH

increased from approximately 4.35–4.75, and DOC

from approximately 19–43 mg l-1 (estimated from

1996 data, Table 3 of Lamontagne and Schiff 1999).

After treatment ceased, NO3
- rapidly returned to pre-

treatment levels, whereas pH and DOC remained

elevated. Lamontagne and Schiff (1999) noted the

positive impact of NaNO3 addition on pH, and

considered that organic acid dissociation may have

buffered this change. Stimulation of decomposition

by N addition was considered minor, because DOC

increases were similar from high-C/N forest soils and

low-C/N lichen patches.

Synthesis and discussion

DOC concentrations increased in nine and decreased

in eight of the experiments analysed (Table 2).

Including individual soil horizons and treatment

levels for each experiment, there was no consistent

DOC response to either the rate of N addition

(Fig. 9a) or the resultant increase in soil solution

inorganic N concentration (Fig. 9b). Based on these

N-addition experiments, therefore, we are unable to

support the hypothesis that increased N input gener-

ally leads to increased DOC loss.

On the other hand, there does appear to be a

relationship between DOC response and the form of

N added: DOC concentrations increased with treat-

ment in all 5 NaNO3 addition experiments, and in one

experiment with elevated gaseous NH3. DOC

decreased with treatment in 8 out of 11 experiments

where an NH4 salt (‘NH4X’) was added, and

increased in the remaining three. This form-depen-

dent DOC response to N addition apparently

corresponds to the effects of N form on soil acidity,

namely a general decrease in acidity with NaNO3 or

NH3 addition, and an increase in acidity with NH4X

addition. The treatment-induced cation-anion imbal-

ance, or ANC forcing, associated with the different N

additions appears to be a reasonable predictor of

DOC response (Fig. 9c), but with outliers for the

three NH4X addition experiments where DOC

increased or did not change: Solling in particular,

and to a lesser extent the Harvard Forest and IES

experiments.

We propose that atypical DOC responses at these

sites may be explained by several factors. First, the

Solling and Harvard experiments received larger N

does (140 and 150 kg N ha-1 year-1 respectively)

than any other experiment studied. The IES experi-

ments also received 100 kg N ha-1 year-1 during

1996–1999; of the remaining experiments, only

the high-N treatment at Ruabon exceeded

100 kg N ha-1 year-1, and at this site N retention

remains very high. It is possible that, with the higher

N loadings at Solling and Harvard Forest, there was

indeed an N-induced increase in DOC production,

outweighing any acidification-induced decrease. Such

an interpretation is perhaps supported by the greater

overall consistency of DOC increases in response to

de-acidifying N treatments (in which N and acidity

effects would be reinforcing), compared to acidifying

N treatments (in which N and acidity effects would

be offsetting). On the other hand, the Solling and

Harvard experiments were also (by far) the most

acidifying, with a maximum ANC forcing of

-1,000 leq l-1 at Harvard and -3,500 leq l-1 at

Solling, compared to -500 leq l-1 in the other

experiments. At very low pH, the DOC-pH solubility

relationship can reverse, as organic molecules

become positively charged and therefore more solu-

ble (Mulder et al. 1994).

Two other mechanisms may be relevant. Solling is

the only site not to have undergone glaciation, and

Fig. 9 DOC response to all individual experimental treat-

ments versus N addition rate (a), treatment-related increase in

soil solution inorganic N concentration (b) and ANC forcing

(c). Footnote: Data presented for all treatments at each site, and

for both organic and mineral horizons where available

c

28 Biogeochemistry (2008) 91:13–35

123



consequently has a much higher anion adsorption

capacity. In such soils, SO4
2- and organic anions

compete for adsorption sites (Kalbitz et al. 2000). In a

study of three similar German forests, Zech et al.

(1994) found dramatically increased mineral soil

solution DOC concentration with increased acidifi-

cation, which was attributed to decreased DOC

sorption. The lack of DOC change at 10 cm at

Solling, with large increases at depth, is consistent

with this mechanism. Zech et al. (1994) also proposed

that at their most S- and N-polluted site, crown

thinning could have increased forest floor DOC

production, as elevated radiation intensity and tem-

perature (together with elevated N) enhanced

microbial activity. This mechanism is not applicable

to Solling, where vegetation changes did not occur,

but appears relevant to the Harvard and IES sites,

where significant treatment-induced tree mortality

was observed. At the IES sites (Fig. 6), DOC did

decrease with acidifying NH4NO3 addition in plots

with low tree mortality, but increased in proportion to

percentage dead basal area in the remaining plots. At

Harvard, maximum mortality in the pine high-N

stand coincided with DOC increases, despite a large

decrease in soil pH. It seems likely that, in addition to

any effect of increased forest floor light levels, a

pulse of DOC will be released following tree

mortality due to death of fine roots, mycorrhizae

and other microbial biomass formerly supported by

root exudation.

Based on these observations, we argue that the

Solling, Harvard and IES experiments can reasonably

be treated as having complicating factors from anion

exchange or tree mortality, at least regarding the

direct relationship between (experimentally N-

induced) acidity change and DOC response in

glaciated soils. The only other location with poten-

tially similar concerns is the Whim NH3 experiment,

where partial vegetation dieback near the NH3 source

could have enhanced DOC loss. However, in biomass

terms this dieback is much smaller than for the forest

sites, and there was no deviation from linear DOC-pH

and DOC-ANC forcing relationships at samplers

beneath areas of vegetation dieback (Fig. 4). There-

fore, we excluded the Solling, Harvard and IES

experiments from the final analysis, but retained the
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Whim NH3 experiment. The resulting plot of DOC

change against ANC forcing (Fig. 10) reveals a

highly significant correlation between percentage

DOC change and ANC forcing (R2 = 0.63,

p \ 0.001). The constant was not significantly dif-

ferent to zero, implying no residual effect of N

fertilisation. Most strikingly, of the 37 total treat-

ment/compartment combinations comprising this

dataset, 14 fall in the bottom left quadrant of

Fig. 10 (ANC forcing and DOC change both nega-

tive), and 16 fall in the top right quadrant (ANC

forcing and DOC change both positive). The remain-

ing seven sites all lie on the axes (four with

DDOC B 2%, three with DANC B 2 leq l-1). In

almost all cases, therefore, a positive ANC forcing

coincided with a DOC increase, and a negative ANC

forcing coincided with a DOC decrease. The field N

addition experiments studied thus support the hypoth-

esis that DOC increases in surface waters are linked

to changes in acidic deposition (Evans et al. 2006a;

Monteith et al. 2007).

With regard to the specific mechanism through

which such a link might operate, Monteith et al

(2007) suggest that soil solution acidity and/or ionic

strength may control DOC mobility. They were

unable to distinguish between these mechanisms on

the basis of monitoring data, as decreasing atmo-

spheric deposition has simultaneously reduced both

acidity and ionic strength. In our experimental

dataset, however, the different N forms added have

differing impacts on soil pH, but all increase ionic

strength. Different DOC responses to NaNO3 versus

NH4X addition thus appear more supportive of an

acidity control. Kennedy et al. (1996) suggested that

pH-dependent solubility of DOM might be more

important in mineral (B) horizons than in organic

horizons, but our assessment suggests that the

proportional response of DOC to acidity change in

organic and mineral soils is similar. However, the

Aber Forest experiment, where DOC response to

treatment was clearer in the B horizon than in the O

horizon, lends some support to this hypothesis.

Conclusions

Across a large experimental dataset, with few

exceptions, DOC concentrations responded predict-

ably to the form of N used for manipulation,

increasing with NaNO3 additions or gaseous NH3

exposure, and decreasing with most NH4 salt addi-

tions. The consistency of DOC response across a

wide range of soils, soil horizons and vegetation

types argues for a fundamental, and relatively simple,

controlling mechanism. The effect of treatment-

induced changes in acidity on DOM solubility

provides one plausible mechanism. This finding is

consistent with the hypothesis, based on long-term

monitoring data, that DOC increases in Northern

European and North American surface waters are

substantially attributable to regional decreases in

acidifying, primarily S, deposition (Evans et al.

2006a; Monteith et al. 2007).

Several caveats apply to this conclusion. Firstly,

ecosystem changes affecting rates of biotic DOC

production may confound a generalised acidity-DOC

relationship affecting subsequent mobility. Pulses of

decomposition following forest dieback provide an

example of this, but other environmental (e.g.

climatic) factors may also be important. Secondly,

soils with high anion adsorption capacities may show

very different DOC responses to changes in acidic

deposition. The large-scale DOC trend analysis by

Monteith et al. (2007) specifically excluded data from

unglaciated regions due to the complicating influence

of S adsorption. Data from Solling suggest that

observed DOC increases in high-latitude surface

waters are unlikely to have been replicated in
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Fig. 10 DOC response to all individual experimental treat-

ments versus ANC, excluding data from experiments with

increased tree mortality (Harvard, IES) or soils with high anion

adsorption capacity (Solling)
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lower-latitude, unglaciated regions of continental

Europe or the Southeastern United States. Indeed, it

seems possible that decreasing S deposition in these

areas could have led to a DOC decrease.

The influence of atmospheric N deposition on

DOC loss in non-experimental settings remains

uncertain, but can by no means be discounted on

the basis of this study. Given the role of N as a

limiting nutrient; evidence that N deposition leads to

soil C accumulation (e.g. de Vries et al. 2006; Evans

et al. 2006b; Pregitzer et al. 2007); 14C studies

showing the importance of recent NPP as a source of

DOC (e.g. Palmer et al. 2001; Neff et al. 2006; Evans

et al. 2007; Smemo et al. 2007); and studies showing

a correspondence between ambient N deposition and

DOC release (Bragazza et al. 2006), a relationship

between N deposition and DOC release may still be

anticipated, particularly over the longer timescales at

which soil N and C accumulate. N addition exper-

iments typically involve adding N at high

concentrations and doses relative to chronic N

deposition, potentially overloading ecosystem assim-

ilation capacity such that more is leached, rather than

accumulated in organic matter. The artificial appli-

cation of N also, almost inevitably, leads to changes

in acidity, and it is thus problematic to infer

relationships between N input and DOC output on

the basis of manipulation experiments alone. In this

regard, we also note that this conclusion is not

uniquely applicable to studies of N effects on DOC:

acidity change may influence other processes com-

monly studied through N addition experiments, such

as mineralisation, nitrification and denitrification;

vegetation uptake; and biodiversity change. Measure-

ment and evaluation of the effects of acidity change

on these processes should therefore form a key

element of all N manipulation experiments, which

remain a vital tool for improving our understanding

the environmental impacts of anthropogenic pertur-

bation of the N cycle.
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