Chapter 15
Atmospheric Deposition and Canopy
Interactions

H. Meesenburg, J. Eichhorn, and K.J. Meiwes

15.1 Introduction

Element inputs by atmospheric deposition form a major contribution to a number of
element fluxes of forest ecosystems. During the last few decades, inputs from the
atmosphere have significantly altered the geochemical cycles of forest ecosystems
especially in heavily polluted areas of Central Europe where forests have remained
major sinks for air pollution.

The deposition of acids such as sulphuric and nitric acids was a major environ-
mental concern during recent decades (Galloway 1995). Acid deposition has caused
the acidification of soils and freshwaters in large areas of North America and Europe
(Johnson et al. 1991). The effects of soil acidification are the leaching of base cations
from the soil (Matzner and Murach 1995), the release of aluminium (Al) ions and
heavy metals into soil solution (Tyler 1983), reduced decomposition of soil organic
matter, and reduced growth of fine roots (Godbold et al. 2003). The release of acid soil
solutions to the hydrosphere is detrimental to aquatic ecosystems.

During the last two decades, deposition of acids has decreased substantially in
Central Europe due to improved emission controls and the closing down of industry
in eastern Germany after the reunion (Meesenburg et al. 1995). However, the
deposition of nitrogen (N) compounds has decreased only slightly and has become
an increasingly important fraction of the total deposition of acids (Wright et al.
1995). Despite reduced deposition of free acidity, the acid load to soils is still high
because of high deposition of ammonium (NHJ). The fate of elevated N-input on
forest ecosystem remains partly unknown, but besides the impact on the acid/base
balance of ecosystems there are some indications of increased tree growth, reduced
root/shoot ratio, nutrient imbalances, reduced frost hardiness and elevated foliage
consumption by insects (Binkley and Hogberg 1997; Aber et al. 1998; Meiwes et al.
1999). In N-saturated ecosystems, soils have increased susceptibility for losses of
nitrate (NOj3") to the hydrosphere and of trace gases to the atmosphere (Aber 2002).

The transfer of elements from the atmosphere to forests takes several pathways.
According to Ulrich (1994), total deposition can be divided into wet deposition and
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interception deposition. The latter is composed of particulate interception and
gaseous interception and is also referred as dry deposition. After deposition to the
canopy of forest stands, the deposited elements may either be taken up by the
canopy or washed from the surfaces by subsequent rainfall (Harrison et al. 2000).

Precipitation beneath the canopy of forest ecosystems contains both wet deposi-
tion and interception deposition. As the canopy acts as sink or source for solutes in
precipitation passing through the canopy, stand precipitation cannot be used as a
measure of total deposition (Horn et al. 1989). Total deposition can be calculated
using wet deposition and independent estimates of dry deposition. Frequently used
methods for the estimation of dry deposition are: canopy budget models (Draaijers
et al. 1996), inferential modelling (van Leeuwen et al. 1996; Gauger et al. 2002) and
gradient measurements of air pollutants (Sutton et al. 1995). The use of canopy
budget models for forest ecosystems was extensively discussed by Draaijers (1999).
Results of canopy budget models are very uncertain for the estimation of N-deposition,
because dry deposition can form a high proportion of total deposition of N (Lindberg
et al. 1986), and N is involved intensively in interaction processes with the foliage
(Homn et al. 1989).

For the investigation of effects of atmospheric deposition on nutrient cycles of
forest ecosystems and of temporal trends of element fluxes on ecosystem processes,
long-term monitoring sites are of overwhelming importance. For this study, three
mature beech forests located at the northern part of the central German mountain
range have been compared. The three sites (Solling, Gottinger Wald and Zieren-
berg) are included in the Level I European Forest Intensive Monitoring programme
(de Vries et al. 2001). At the Solling site, deposition measurements started in 1968.
The Solling beech forest site together with the Solling spruce forest site has — to our
knowledge — the longest continuous record of throughfall measurements globally.
Deposition measurements at the Gottinger Wald site started in 1981 and at Zieren-
berg in 1989.

In this chapter, these long-term data sets will be used: (1) to characterise the
chemical composition of open field deposition, throughfall and stemflow and to
analyse relationships among major input components to relate them to different
sources, (2) to describe the annual deposition fluxes and their temporal changes on
the three sites, and (3) to analyse the interactions of precipitation inputs with the
canopy of the stands.

Data collection and evaluation procedures. Element fluxes have been measured
in open field deposition, throughfall and stemflow. Stand precipitation is the sum of
throughfall and stemflow. Open field deposition and throughfall were monitored
with samplers, which remained continuously open to the atmosphere (bulk sam-
plers). Samples obtained with such samplers are composed of rainwater or snow
and gravitational sedimented particles. In remote areas, there is little difference
between element fluxes of bulk precipitation and wet-only precipitation (Ibrom
1993; Gauger et al. 2002). Open field deposition is being sampled at clearings
located close to the monitoring sites. Here, we use the term open field deposition
instead of bulk deposition, because the term bulk deposition is generally used for
sampling of precipitation with bulk samplers without any regard to their location
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(open field or under the canopy). At the Solling and Géttinger Wald sites, samplers
with 50-cm? surface area were used in summer months (May—October) until 1990.
From 1990 onwards, funnel-flask samplers with 87.5-cm?” surface area have been
used for summer sampling. In winter months (November—April), buckets with
surface area of 570 (until 1990) or 500 cm? (from 1990 onwards) have been used
(Meiwes et al. 1984). At the Zierenberg site, funnel-flask samplers with 100-cm?
surface area have been used in summer months and buckets with 500-cm” surface
area in winter months (Brechtel and Hammes 1984; Eichhorn 1995). At the Solling
and Gottinger Wald sites, six samplers have been used for open field deposition and
15 samplers for throughfall (Meesenburg et al. 1997). At the Zierenberg site, ten
replicates have been used for open field deposition and 20 for throughfall. Coarse
particles (e.g. litter) have been prevented from falling into the samplers by using a
polyethylene mesh at the Solling and Géttinger Wald sites and a ceramic sieve at
Zierenberg site. After recording the volumes, three composite samples were formed
for each of open field deposition and throughfall for the Solling and Gottinger Wald
sites, and four composite samples for the Zierenberg site for laboratory analysis.

Sampling devices and sampling procedures of the three sites were tested in comp-
arison with 18 other methods for open field deposition and throughfall used within the
framework of the ICP forest level II programme. The performance of the deposition
monitoring at the study sites was found to be acceptable (Draaijers et al. 2001).

Stemflow has been sampled by fixing polyurethane spirals around the stems,
which were coated with paraffine. Three to five replicates were installed, which
were analysed separately (Solling and Gottinger Wald sites) or pooled to a com-
posite sample (Zierenberg site).

Water flux via stemflow for Zierenberg and Solling has been estimated to be
15% of the total throughfall flux. At the Solling site, a value of 15% is close to
the mean value of stemflow flux estimated by Benecke (1984) for the period
1969-1975. For Gottinger Wald, stemflow fluxes were obtained from regression
functions between stemflow volume and throughfall (Gerke 1987).

Analytical methods are described by Fassbender and Ahrens (1977) and Konig
and Fortmann (1996a—d) for the Solling and Gottinger Wald sites. In short, pH was
measured potentiometrically. Sodium (Na*), potassium (K*), magnesium (Mg2+),
calcium (Ca®"), and manganese (Mn**) were determined by AAS until 1989, and
since 1990 by ICP-AES. NH, NO3 and chloride (C1~) were analysed colorimetri-
cally with a continuous flow system. Sulphate (SO7 ) was measured by precipita-
tion with Ba and by potentiometric titration of excess Ba with EDTA until 1982,
from 1983 to 1992 by the methyl-thymol-blue method, and since 1993 by ICP-AES.
Organic N (N,y,) is calculated as the difference between total N (Ny,) (measured
after digestion) and the sum of NHy and NO3 .

Because no independent estimates of interception deposition are available for
the study sites over the whole observation period, we have used the canopy budget
model developed by Ulrich (1994) for the calculation of total deposition. Annual
fluxes of ions have been used for the calculation procedure. The canopy budget
model of Ulrich (1994) estimates the interception deposition for element species
A (ID,), which are not adsorbed or leached from the canopy, from the difference of
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stand precipitation (SP4) and open field precipitation (wet deposition OF,). Inter-
ception deposition ID, is the sum of particulate (IDp,y, 4) and gaseous deposition
(IDggas, 4)- Total deposition (TD,) is the sum of wet deposition and interception
deposition.

TD, = OF4+ID,, (15.1)
D, = IDpy -+ 1Dgas 4, (15.2)
ID, = SP, — OF,. (15.3)

A =Na, CI, SO,.

Particulate interception deposition (IDpar, 4) is estimated from the ratio between
interception deposition and open field precipitation of Na assuming that Na™ is
only deposited by wet deposition and particulate interception. It is assumed that
the particle size distribution of all deposited substances is similar, resulting in a
similar deposition velocity. Another assumption is that particulate interception is
caused to a large degree by fog droplets. In contrast to earlier formulations of the
model by Ulrich (1983) and Bredemeier (1988), Ulrich (1994) extended the model
for NH; and NOj3 implying the assumption of similar deposition velocities holds
for particulates containing NH; and NOj particles. The assumption of similar
deposition velocities is highly questionable especially for N-compounds (Spranger
1992):

fa = (I)];i : (15.4)
IDpart 4 = fna OF4. (15.5)
A = H, K, Mg, Ca, Mn, Al, Fe, NHy, Cl, SO4, NOs.
Gaseous deposition (IDg, 4) of metal cations is assumed to be negligible.
IDgas4 = 0. (15.6)

A = Na, K, Mg, Ca, Mn, Al, Fe.

Gaseous deposition (IDg,,, 4) of SO,, HCI, HNO3 and NH3 is estimated from the
difference of interception deposition and particulate deposition:

IDgas,A = IDA — IDparl,A = SPA - OFA - IDparl,A~ (157)

A = NH,, Cl, SO4, NO;.
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Gaseous deposition of SO,, HCI and HNOj causes an equivalent input of protons,
gaseous deposition of NH; a consumption of protons:

IDgas.H = IDgas,SO2 + IDgas,Cl + IDgas,NO3 - IDgas,NH4- (158)

If particulate deposition of NH; and NO3 is higher than the difference between SP,
and OF,, no gaseous deposition can be calculated.

The difference between total deposition and stand precipitation is interpreted as
canopy budget (CB,). Positive values are interpreted as leaching, negative values as
uptake by the canopy:

CB4 =SP4 — TD4 = SP4 — OF4 — IDg4. (15.9)

From the calculation scheme, it arises that either gaseous deposition (if IDp,
< SPz—OF;) or uptake by the canopy (if 1D, >SPp—OFg) is calculated for NH;
and NOj3 . As both processes can occur concurrently (Veithen 1996; Garten et al.
1998), total deposition of NH; and NOj  is underestimated by the model. More-
over, the processes of canopy uptake and leaching are highly seasonal and the use of
annual budgets disregards the seasonal nature of these processes. The assumptions
involved in the model were not tested on these three sites and will need due
consideration during the interpretations of model results.

Despite the limitations mentioned above, the canopy model of Ulrich (1994) has
been applied to NH; and NOj3. Total deposition of nitrogen (N,,) has been
calculated as the sum of total deposition of NHj, total deposition of NO3 and
open field deposition of N, (Ulrich 1994).

15.2 Precipitation Chemistry

For characterisation of the chemical composition of atmospheric deposition, data
for the period 1993-1998 were selected as all three study sites had information for
this period. As precipitation chemistry has changed significantly during the last few
decades, only the pattern for the selected period is described.

At the Solling site, open field precipitation chemistry is dominated by NHJ
(44% of cations on equivalent basis) and Na* (23%), and H*, Ca**, Mg®* and K™ are
only of minor importance in that order. Anions of significance are SO4*~ (43%),
NO3 (35%) and C1~ (22%). Concentrations of NH are higher than concentrations
of NO3™ (Table 15.1). The contribution of N, t0 Ny is about 7%.

At the Gottinger Wald site, 44% of the sum of cations in open field precipitation
is NH;. Na* (19%), Ca** (15%), and H* (10%) also have some quantitative
importance. The contribution to the sum of anions is 16% for CI~, 39% for NO3
and 44% for SO,>".

At the Zierenberg site, NH; (30%) is the most abundant cation in open field
precipitation, but the relative contributions of Ca®* (27%) and Mg?* (14%) are
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Table 15.1 Mean concentrations and standard deviation (in parentheses) of total N (N,,) and
relative contribution of NHj, NO3, and Norg to Ny in open field precipitation, throughfall and
stemflow from 1993 to 1998 at the study sites

Site Niot NH,* NO;~ Norg
(mmol 171 % % %
Solling Open field deposition 125 (1) 52 41 7
Throughfall 260 (18) 51 37 12
Stemflow 216 (28) 41 40 19
Gottinger Wald Open field deposition 170 (1) 50 43 7
Throughfall 293 (5) 49 40 11
Stemflow 303 (43) 44 42 15
Zierenberg Open field deposition 174 50 41 9
Throughfall 454 39 51 10
Stemflow 310 45 35 20

much higher than at the Solling and Gottinger Wald sites. This may be related to
higher input of dust particles and to other factors relating to methodology of
collection and analysis. The contribution of Na* to the sum of cations is 16%.
The most abundant anion is SOf_ (45%), which is followed by NO3 (34%) and
CI” (21%). Various anions have similar fractions in the open field precipitation on
the three sites with values following the order: 5037 (43-45%) > NO53 (34-39%)
> Cl™ (16-22%).

N, concentrations are generally highest in throughfall and lowest in open field
precipitation (Table 15.1). After passing through the canopy, concentrations of N
in the precipitation increased by 108% at Solling, 72% at Gottinger Wald and 161%
at Zierenberg compared to open field precipitation. This indicates a much higher
interception of dry deposition at Zierenberg. The increase of concentrations of N,
in stemflow was very similar at the three study sites (73—-78%).

The relative contribution of the N species to N, is similar at the three study sites
(Table 15.1). NHZ concentrations in open field deposition are higher than NO3™ at
all sites indicating that N-inputs are influenced to a large degree by animal hus-
bandry. In throughfall and stemflow, the relative contribution of Neyg t0 Ny is
generally higher than in open field precipitation indicating leaching of N, from
leaves and bark of the trees or from other sources of N, in the canopy. At the
Zierenberg site, the enrichment of the N-compounds in throughfall as compared to
open field precipitation is much higher than at the Solling and Gottinger Wald sites.
The enrichment of NHJ in throughfall is higher than that of NO3™ at the Solling and
Gottinger Wald sites and lower at the Zierenberg site. The strong enrichment of
NOj relative to NHj in throughfall at Zierenberg may be explained by nitrification
of NHj in the canopy (Papen et al. 2002). (Table 15.1). However, Eichhorn (1995)
attributed the enrichment of NO3™ in throughfall to its leaching from the canopy. At
the Solling and Géttinger Wald sites, the relative contribution of NHJ in stemflow
is lower than in throughfall. This pattern may be partly explained by nitrification of
NH; at branches and stems.
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Mean pH in throughfall is higher than in open field deposition at the Gottinger
Wald and Zierenberg sites reflecting the buffering of acids in the canopy, but lower
at Solling. pH is generally lower in stemflow than in open field deposition.

Sea spray is a major source for C1~, Na*, and Mg?"* in open field precipitation.
An influence of road salt can be excluded since the sampling sites are far away from
roads. Higher concentrations of C1~ during the winter season are related to more
frequent storm events. At the Solling site, the contribution of sea spray is 100% for
Cl™, 77% for Na* and 44% for Mg" (calculated with C1~ as index element). At the
Gottinger Wald site, the influence of sea spray is somewhat lower than at the Solling
site with values of 100% for C1~, 72% for Na* and 29% for Mg*". Sea spray is an
important source at the Zierenberg site for C1~ (100%) and Na* (80%) whereas
a low value for Mg>* (10%) points to sources other than sea spray being more
important, e.g. soil dust due to agricultural activities or Mg containing particles
from different industrial processes such as coal burning or handling of bulk cargo.

The covariance analysis of the concentrations of solutes in open field precipita-
tion, throughfall and stemflow at the three sites was undertaken by employing
principal component analysis (SPSS version 6.1.2). Principal component analysis
was used to find the least linear combinations of the parameters which were
required to explain as much of the total variance of the data as possible. The
major ions Na*, K*, Mg**, Ca®*, H*, SO,°~, CI", NH; and NO;3 and N,,, were
included for the analyses. Principal component analysis has been frequently used
for assigning different sources to various solutes in the precipitation (Gorham et al.
1984; Feger 1986) and to describe the predominant processes occurring in ecosys-
tems (Christophersen and Hooper 1992). Varimax rotation has been performed to
find out the contribution of different processes.

As an example, results for open field precipitation at Solling are given in
Table 15.2 for principal components with eigenvalues >1.0. Three components
could be differentiated. Component 1, which explains 46% of the variance, has high
loadings of NHZ, NO5, SO,>~ and Ca?*. These ions are negatively correlated to the
amount of precipitation. NHf, NO5 and SO3~ can be ascribed to the emission of

Table 15.2 Matrix of factor loadings (varimax rotation) and communalities of principal compo-
nent analysis for concentrations of ions in open field deposition at Solling. Factor loadings above
10.61 are given in bold

Component 1 Component 2 Component 3 Communality
Na* 0.13 0.97 0.02 0.96
K* 0.48 —-0.15 0.64 0.67
Mg>* 0.38 0.84 0.20 0.89
Ca** 0.75 0.27 0.27 0.71
H* 0.21 —0.25 —0.71 0.62
S0,*~ 0.94 0.21 0.08 0.93
Cl™ 0.09 0.96 —-0.10 0.93
NH,* 0.90 0.14 0.10 0.84
NO;~ 0.93 0.09 0.02 0.93
Norg 0.29 —0.08 0.79 0.72

Explained variance (%) 46.0 22.4 13.7 82.0
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NH;, NO, and SO,. NH; emissions can be attributed mainly to intensive farming
practices such as animal husbandry and field application of faecal materials. NOy is
emitted to a high degree by vehicles, whereas SO, emissions can be ascribed mainly
to large power plants. Ca®* and K* can be attributed partly to the emission of dust.
Thus, component 1 describes components of air pollution in open field precipitation.

Component 2 explains about one-quarter of the variance and has high loadings
of CI~, Na*, and Mg2+. This component can be ascribed to the influence of sea
spray. C1~, Na* and Mg** are independent of the amount of precipitation. The third
component explains 14% of the variance and has high loadings of N, and K" and
a high negative loading of H*, which can be ascribed to plant-based organic
substances.

The first principal component of stemflow at Solling explains over 60% of the
variance, and has high loadings of Mg®*, Ca**, H" and SO,*~ and considerable
loadings of K* and NO5 (Table 15.3). Mg?*, Ca** and K* ions are leached from the
vegetation, when buffering of H* occurs whereas SO, and NOj3 are involved in
the charge balance. Thus, the first component can be interpreted as describing the
input of acid depositions and their subsequent buffering by ion exchange. The
second component in Table 15.3 explains 18% of the variance and has high
loadings of NHJ, NO3 and Nore which may account for the transformation of
N-species and their interaction with the different tree compartments and canopy
epiphytes. The third component explains 10% of the variance and has high loadings
of Na™ and CI~, which can be interpreted as sea spray.

The principal component analysis for open field precipitation at the Gottinger
Wald and Zierenberg sites gives similar results as for the Solling site (Table 15.4).
Also for throughfall data at Solling, principal components provided similar interpreta-
tion of results. For throughfall data at the Gottinger Wald and Zierenberg sites, canopy
interactions are a major source affecting the variance of the data (Table 15.4).

For stemflow data at the Géttinger Wald and Zierenberg sites similar results as
for the Solling site have been obtained (Table 15.4). In contrast to open field
deposition, where the components can be interpreted as different sources of the
Table 15.3 Matrix of factor loadings (varimax rotation) and communalities of principal compo-

nent analysis for concentrations of ions in stemflow at Solling. Factor loadings above 10.6] are
given in bold

Component 1 Component 2 Component 3 Communality
Na* 0.34 0.10 0.93 0.99
K* 0.49 0.53 0.10 0.52
Mg>* 0.83 0.19 0.49 0.96
Ca* 0.92 0.20 0.26 0.96
H* 0.92 0.20 0.26 0.93
SO, 0.81 0.50 0.26 0.97
Cl™ 0.30 0.17 0.92 0.97
NH4* 0.07 0.93 0.19 0.90
NO;~ 0.48 0.76 0.29 0.91
Norg 0.13 0.93 —0.03 0.72

Explained variance (%) 62.4 18.1 9.6 90.1
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Table 15.4 Explained variance of principal components and sum of explained variance of
principal component analysis (varimax rotation) for concentrations of ions in open field deposition
(OF), throughfall (TF) and stemflow (SF) at Solling, Gottinger Wald and Zierenberg (interpreta-
tion of principal components is given by letters; the same interpretation means that the same
elements have high loadings in certain components)

2explained

Site Flux Component 1 (%) Component 2 (%) Component 3 (%) variance (%)
Solling OF  48.9* 24.2° 12.2° 85.3

TF  50.4° 17.7° 12.3° 80.4

SE 6244 18.1° 9.6° 90.1
Géttinger ~OF  53.3° 16.5° 13.2¢ 83.0

Wald

TF 4479 21.1* 16.5° 82.4

SF 52.8¢ 19.5° 16.1° 88.4
Zierenberg OF  56.2° 13.1° 9.8° 79.2

TF  59.6™ 16.44 8.3 84.3

SF 57.7¢ 17.7° 10.0° 85.5
#Air pollution
"Sea spray

“Organic deposition
dCanopy leaching

°N mineralisation processes
'H* buffering

solutes, transformation and interaction processes of the solutes with the vegetation
seems to play an important role for the variance of the stemflow data.

15.3 Element Fluxes

We present the element fluxes with open field deposition, throughfall, stemflow,
stand precipitation and total deposition separately for three periods of roughly a
decade each (Tables 15.5-15.7). The period from 1969 to 1980 is only available for
the Solling site. In 1981, the Gottinger Wald site was established and represents the
beginning of the second period from 1981 to 1989. The Zierenberg site was
established in 1990, which is the beginning of the third period from 1990 to 2002
and represents the period after emission control in Germany. Comparing the period
1990-2002 between the sites indicates higher fluxes of SO; ~, CI™ and Na* at the
Solling site than at the Gottinger Wald and Zierenberg sites due to higher precipi-
tation rates at the Solling site. N-fluxes in open field deposition were lowest at the
Zierenberg site and highest at the Solling site, whereas they were quite similar in
stand precipitation and total deposition at the three study sites. However, fluxes of
K*, Mg®* and Ca**are highest at the Zierenberg site.

Fluxes of most elements have decreased during the last 22 years at the Solling
and Gottinger Wald sites (Tables 15.5 and 15.6). Decreasing trends have been
detected for open field deposition, throughfall, stemflow and stand precipitation as
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well as for total deposition. Significant trends can be observed for SO427, H*, Cl,
Mg?*, Ca**, Mn** and N-species (Table 15.8). In open field deposition, stemflow
and total deposition, decreasing trends are also visible for K*. Fluxes of SO,*~
decreased by 81-94% during the last 22 years and reflect the general trend of S
emissions in Germany (Fig. 15.1) (Umweltbundesamt 2000; Gauger et al. 2002).
Decreasing deposition rates of Mg®*" and Ca>* can be attributed to reductions of dust
emission in Central Europe. At the Zierenberg site, similar trends were observed
although due to a shorter observation period the relative reduction of deposition was
less than for the Solling and Gottinger Wald sites (Table 15.7). Significant negative
trends can be observed for SO4*~, H*, Ca®* and Mn>* at Solling even though water
fluxes increased during the period 1990-2002. For Cl ", increasing fluxes have been
measured under the canopy at the Zierenberg site. Decreasing deposition rates for
many elements have been observed also for other forest ecosystems in Lower
Saxony (Meesenburg et al. 1995) and Hesse (Balazs 1998) as well as for most
parts of Germany (Gauger et al. 2002; Matzner et al. 2004).

N deposition at the Solling site showed different trends during the periods
1971-1985 and 1985-2002. During the first period, fluxes of NH7, NO3 and N
showed no change or slightly increasing trend (Fig. 15.2). However, since 1985,
a slightly decreasing trend was evident. N, fluxes have reduced by 30-55% during
the period of 1981-2002 from about 36 to 22 kg ha™' per year. Fluxes of NH} and
NO;3™ with stemflow decreased even more. For N, high flux rates occurred in
the 1970s, whereas low rates were measured afterwards. Temporal trends of Nog
fluxes should be treated cautiously, since N, is calculated as the difference
between N, and the inorganic N-components and any alteration in the analytical
methods of any one of the three components may have substantially affected the
N estimates.

A decrease in N-fluxes was observed at Gottinger Wald during the whole
observation period (Table 15.8, Fig. 15.3). However, for NHJ, Norg, and Ny in
throughfall, these trends were not significant. NH; fluxes at the different pathways
decreased by 30-50% within the last two decades. Reduction of NO5 was about 40%
for stand precipitation. N, fluxes have reduced by about 35% (from about 29-17kg
ha™' per year). For stemflow, relative reductions have been generally higher.

N fluxes during the period 1990-2002 were generally very similar at the
study sites and the interannual variations showed the same pattern (Fig. 15.3,
Tables 15.5-15.7). Open field N-deposition was highest at Solling and lowest at
Zierenberg, whereas N-values in stand precipitation and total deposition were
somewhat lower at Gottinger Wald than at Solling and Zierenberg. For a spruce
stand at Solling, Ibrom et al. (1995) calculated by use of micro-meteorological
methods a total deposition of N of 460 mmol m? per year, whereas total deposition at
the same stand calculated with the model of Ulrich (1994) was only 285 mmol m >
per year. Marques et al. (2001) showed that dry deposition (particulate and gaseous)
contributed 75% to total deposition at the Solling spruce stand. These results and
similar results from other locations (Harrison et al. 2000; Zimmerling et al. 2000;
Meesenburg et al. 2005) suggest that the canopy model may be underestimating
total deposition of N (see Horn et al. 1989; Harrison et al. 2000).
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Fig. 15.1 Time series of emission density of sulphur (mmol. S m~2) in Germany, total deposition
(mmol, S m™?) and SO, concentration (ng SO, m™>) in ambient air at Solling site (SO)

Mean Na* fluxes in stand precipitation have been higher than in open field
precipitation during the period 1990-2002 by a factor (ID/OF) of 0.49 at Gottinger
Wald, 0.41 at Solling and 1.02 at Zierenberg sites. This factor (fya., see data
collection and evaluation procedures) is used to calculate the particulate intercep-
tion which is higher at the Zierenberg site than at the Solling and Gottinger Wald
sites and may be caused by the high agricultural activity surrounding the Zierenberg
site, and by higher aerodynamic roughness of the forest stand, which is situated at
the slope of a relatively isolated mountain.

A high fraction of total acid inputs was contributed by NHJ, where the acid
inputs are given by the sum of H*, Mn** and NH," depositions. Despite decreasing
NH; fluxes at the Solling and Géttinger Wald sites during the last two decades, the
relative contribution of NHZ to the fluxes of acids has increased significantly
because of a considerable decrease in free acidity fluxes. During 1990-2002, the
contribution of NHJ to total acid deposition was 50-85% at Solling, 75-95% at
Gottinger Wald and 40-65% at Zierenberg, whereas at the beginning of the 1970s,
NH; contributed from 10 to 40% at the Solling site.

Annual element fluxes for open field deposition, throughfall and stemflow at Solling,
Gottinger Wald, and Zierenberg are documented in Annex Tables 15.11-15.19.

15.4 Canopy Rain Interactions

Various tree compartments (leaves, twigs, branches and bark) act as sources or
sinks for solutes in precipitation when they pass through the canopy. The canopy
budget is commonly estimated by subtracting stand precipitation from total deposition
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Fig. 15.2 Time series of annual fluxes of (a) NHZ and (b) NO3 with open field deposition (OF),
stand precipitation (SP) and total deposition (7D, according to Ulrich 1994) at Solling site

(canopy model by Ulrich 1994). Negative values can be interpreted as indication of
leaching from the leaves (Langusch et al. 2003) and of dissolution of dry deposited
particles, whereas positive values indicate a sink function, e.g. uptake by the canopy.
Plant leaching may occur as a diffusion of organically complexed cations or as an
exchange process, where nutrient cations such as K*, Mg®*, Ca®* and Mn** are
exchanged against H" or NH} (Klemm et al. 1989; Draaijers and Erisman 2005).
Mean values for canopy budgets have been negative for K*, Mg®*, Ca®* and Mn**,
whereas they have been positive for H*, NH; and NO3 (Table 15.9). At the
Zierenberg site, no retention of NO3 has been observed during the observation
period. Retention of nitrogen by the canopy can be caused by (1) uptake by
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Fig. 15.3 Time series of annual N, fluxes with stand precipitation at the Solling, Gottinger Wald
and Zierenberg sites

Table 15.9 Average canopy budgets (total deposition—stand precipitation) for a number of
elements during the periods 1969-1980 (Solling only, 1971-1980 for NHZ, NO3), 19811989
(Solling and Géttinger Wald), and 1990-2002 at the three sites

Site Period K* Mg®*  Ca** HY Mn?** NH; NO;5
(mmol, m~> per year)

Solling 1969-1980 —55 -5 -29 65 -11.8 70 36
1981-1989 =56 —12 -39 103 -103 29 22
1990-2002 —51 —6 —14 34 -3.7 12 6

Gottinger Wald 1981-1989 =50 —12 —46 88 -0.9 5 5
1990-2002 -52 -6 —17 29 -0.2 6 7

Zierenberg 1990-2002 —65 —10 -5 50 —0.1 18 0

epiphytic algae and lichens, (2) immobilisation by micro-organisms (Stadler and
Michalzik 2000), and (3) assimilation into the leaves (Garten et al. 1998). The last
process is likely to be the most relevant one for the retention of N by the canopy
(Lovett and Lindberg 1993).

Mean NHJ retention rates by the canopy decreased during the study period at the
Solling site. For the measurement period of 1990-2002, NH} retention by the
canopy was estimated as: 12 mmol, for Solling, 6 mmol. for Gottinger Wald, and
18 mmol, m 2 per year for Zierenberg. The corresponding figures for NO5 were:
6 mmol, (Solling), 7 mmol. (Go6ttinger Wald) and 0 mmol, m 2 per year (Zieren-
berg), and for Ny, 18 mmol. (Solling), 13 mmol. (Goéttinger Wald) and 18
mmol. m ™2 per year (Zierenberg). As mentioned above, these estimates are uncer-
tain and are most probably an underestimation. For the sites of the Integrated Forest
Study (IFS), mean inorganic N-retention rates of 10—160 mmol. m > per year were
found (Lovett and Lindberg 1993), which brackets the values found for the sites of
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Fig. 15.4 Canopy retention (N-uptake) of total N compared to requirement for growth increment
and forest requirement (growth and turnover) at Solling, Gottinger Wald and Zierenberg (data for
N increment and N requirement from Rademacher et al. (Chap. 8)

this study. Horn et al. (1989) calculated N-retention rates by the canopies of a
healthy and a declining spruce stand at Fichtelgebirge, Bavaria, of 89 and 185
mmol, m ™2 per year, respectively.

If all the assumptions for calculating the canopy retention of N were valid, the
canopy absorption would cover 7% of N-demand for growth and turnover at the
Solling stand which has been calculated to be 740 mmol m~ (Chap. 8). Similar
values of N-demand calculated for the Gottinger Wald (770 mmol m 2 per year)
and Zierenberg (360 mmol m 2 per year) stands (Chap. 8 ), of which about 1.5%
and 5% will be taken up by the canopy from atmospheric deposition (Fig. 15.4).
Compared to the N required for the growth increment, the Solling stand can cover
its N-demand completely by uptake within the canopy, whereas the relative contri-
bution of crown uptake is low for the Gottinger Wald (11%) and Zierenberg stands
(25%). Annual N-retention for forest growth has been estimated as 43 mmol m2
for the stands at Solling, 38—63 mmol m~? for Gottinger Wald and 126 mmol m~?
for Zierenberg (Chap. 8).

The assimilation of NH; and NO3 from precipitation has been experimentally
confirmed by Brumme et al. (1992); Veithen (1996); Garten et al. (1998); and
Harrison et al. (2000); Brumme et al. (1992) found that 6-12% of 15N applied to
the aboveground parts of 3 to 9-years-old beech plants from the Solling site over
4 months was allocated to the roots. By the use of °N labelled NH; and NOj , they
found higher uptake rates for NH; as compared to NOs indicating preferential
uptake of NH;. In a similar study, Garten et al. (1998) found a retention of N
labelled wet deposition of 12-26% for deciduous trees at Walker Branch Water-
shed, Tennessee, USA. Veithen (1996) used washing procedures at leaves from
the Solling and Gottinger Wald stands for the study of canopy interactions and
also found higher uptake rates for NH; as compared to NOj3 . The preferential uptake
of NHJ is confirmed for the Solling and Zierenberg sites from the data of this study.

At the Solling site, uptake of NH; and NO; by the canopy decreased during the
last 18 years (Table 15.10). At the Gottinger Wald and Zierenberg sites, no such
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Table 15.10 Trends of canopy budgets at Solling and Géttinger Wald sites from 1981 to 2002 and
at Zierenberg site from 1990 to 2002 (test of trend with correlation coefficient after Pearson; o no
trend, + significant increasing trend p <0.05, ++ highly significant increasing trend p <0.01, —

significant decreasing trend p <0.05, — — highly significant decreasing trend p <0.01)

Site K* Mg>* Ca** H* Mn** NH NO3
Solling o + ++ - — ++ — —
Gottinger Wald o ++ + _ ++ ° °
Zierenberg o ) o - — o ) o

trend was observed. Brumme et al. (1992) and Veithen (1996) showed that NH;
uptake is dependent on the NH} concentration in precipitation. Thus, decreasing
uptake rates of NH; may be attributed to decreasing NHZ concentrations in
deposition. Veithen (1996) estimated the compensation point for NHj, where
NH; uptake turns to NHJ leaching, to be between 28 and 46 pmol, 1~'. As mean
NHy concentrations in throughfall and stemflow at the Solling and Gottinger Wald
sites are currently well above the compensation point found by Veithen (1996),
NHJ uptake is likely to take place at these stands.

Positive canopy budgets of H* indicated proton buffering at all sites. The
buffering can occur as an exchange process where H' is exchanged against cations
such as K*, Mg?* or Ca®* (Lindberg et al. 1986; Bredemeier 1988; Klemm et al.
1989, Matzner and Meiwes 1994; Draaijers and Erisman 1995). Mean proton
buffering rates for 1990-2002 were calculated at 34 mmol. (Solling), 29 mmol,
(Géttinger Wald) and 50 mmol, m ™2 per year (Zierenberg). Between 1981 and
2002, proton buffering rates decreased significantly at the Solling and Gottinger
Wald sites accompanied by a simultaneous decrease in the leaching rates of Mg**
and Ca®* (Table 15.10). Proton buffering rates decreased significantly at the
Zierenberg site between 1990 and 2002.

Buffering of total acidity in the canopy has been calculated from the sink
functions of H" and NHJ. At the study sites, 13-59% of the load of total acidity
is buffered in the canopy on an annual basis (Fig. 15.5). In addition to decreasing
loads of total acidity, the degree of buffering of acidity in the canopy has also
decreased during the last 22 years. For the Gottinger Wald site, this might be
explained by the more or less constant NH," uptake, which causes a production
of H in the canopy (Ulrich 1994). At the Solling site, the decrease of H* buffering
has been twice as high as the decrease of NH, " uptake. Hence, the H production by
NH,* uptake has become more important. At the Zierenberg site, the degree of acid
buffering in the canopy was generally higher compared to the other sites that also
decreased during the study period (Fig. 15.5).

Leaching rates of K* from the canopy have been similar at the three study sites,
whereas leaching of Mn?* has occurred only at the Solling site probably due to the
higher Mn** availability in this acid soil (Table 15.9). The higher amount of
leaching of Mn* from the canopy at the Solling site was confirmed by Veithen
(1996). Leaching of Mg?* was highest at the Zierenberg site because of high Mg
foliar content and also high Mg?* concentration in soil solution resulting from the
high Mg?* content of the magmatic bedrock. Leaching of Ca>* from the canopy was
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Zierenberg, Solling and Gottinger Wald sites

similar at the Solling and Géttinger Wald sites, but lower at the Zierenberg sites.
Contrary to these results, Veithen (1996) found higher leaching rates for Ca** from
the canopy at the Gottinger Wald site than at the Solling site, which were attributed
to a better Ca>* nutrition of the stand growing on calcareous substrate. Surprisingly,
the Ca®* availability of the soils and also foliar contents of the three sites were not
reflected by the Ca** leaching rates from the canopy. Mohr et al. (2005) found a
positive relation between leaching rates of Ca®* and Mg”* and foliar nutrient
concentrations. Time series of canopy budgets indicate that leaching rates of Ca*,
Mg>* and Mn>* decreased significantly during 1981 and 2002 at the Solling and
Gottinger Wald sites (Table 15.10). A decrease in the leaching rates of nutrient
cations from the canopy may be related to decreasing deposition rates of H*. No
significant trends of canopy budgets have been observed at the Zierenberg site for
these ions.

15.5 Discussion

Atmospheric deposition of many major elements can be attributed almost quantita-
tively to human activities. The only important natural source of salts is of marine
origin. Main sources of anthropogenic air pollutants are: combustion processes,
industrial processes and agriculture. Combustion and industrial processes are mainly
responsible for the emission of SO, and NOj, whereas dust particles are released
mainly through industrial processes. NH3 is mainly emitted through agricultural
activities related to animal farming (Umweltbundesamt 2000). Deposition rates at
the study sites are moderate when compared to other study sites in Germany
(Gauger et al. 2002), but are relatively high compared to other regions in Europe
(Hauhs et al. 1989; de Vries et al. 2001). Compared to spruce stands, deposition at
beech stands is generally lower (Meesenburg et al. 1995; Balazs 1998; Rothe et al.
2002, Matzner et al. 2004); Eichhorn et al. (2001) evaluated data from 49 beech
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plots across Europe with average total N-deposition of 136 mmol, m ™2 per year
(min-max: 59-210 mmol, m > per year). The study sites are with 151-179 mmol,
m 2 per year among the European beech sites with above-average N-deposition.
Compared to 144 intensive monitoring plots in Europe, Na* scaling factors (fy,) at
the study sites are above average (medium value 0.34, de Vries et al. 2001),
suggesting that the contribution of dry deposition to total deposition is more
important than at most other forests in Europe.

Deposition rates of the most major elements decreased during the last two
decades which is evident at the Solling and Gottinger Wald sites with long
observation periods. Atmospheric deposition is primarily characterised by NH,*,
NO; and SO; . During the 1970s and 1980s, H*also played a major role in
precipitation chemistry. During the last two decades deposition of free acidity has
decreased but that of potential acidity has remained high due to high NH4" deposi-
tion. The reductions of SO~ deposition are related to reductions of SO, emission in
western Germany (Umweltbundesamt 2000). Because H* is mainly generated
through the oxidisation of SO, to SO4*~, the H* deposition decreased simulta-
neously. The reduction of acid depositions to central German forest ecosystems is
attributed to the reduction of emissions, which became effective through legislation
and the closing down of industrial units in eastern Germany after the reunion. There
has been a reduction in dust emissions, decreasing the depositions of Ca®* and
Mg**. This decease in cations may have consequences for the buffering of acids in
precipitation and for the nutrition of the forest stands. N-deposition decreased only
slightly, which is also in agreement with constantly high N-emissions in western
Germany (Umweltbundesamt 2000). N-deposition at the three sites is currently well
above the amount retained for the forest increment.

Estimates of total deposition of different N-species are very uncertain because of
the involvement of several different deposition and transformation processes in the
canopy (Marques et al. 2001). N-deposition into forests occurs as rainwater, as fog
or in gaseous form and with several different N-species. The deposited N-com-
pounds interact with the canopy including their assimilation into leaves and trans-
formations of the N-species. Garten et al. (1998) argued that the assimilation of
gaseous N-compounds was the most effective uptake process, whereas Harrison
et al. (2000) estimated the uptake from wet deposition to be more important.
N-leaching from the canopy is possible at certain growth phases. Due to the
complex biochemical processes, estimates of total N-deposition with a simple
approach such as the model of Ulrich (1994) should be viewed with due care.
Because N-uptake and gaseous deposition cannot be independently calculated, an
underestimation of total deposition is likely by this model. Alternative canopy
budget models are more specific with respect to nitrogen, but require independent
input parameters, which are sometimes difficult to estimate (Horn et al. 1989;
Draaijers and Erisman 1995). Independent measurements with micro-meteorologi-
cal methods at a spruce stand adjacent to the Solling beech stand suggested an
undestimation of N-deposition of almost 50% by the Ulrich model (Ibrom et al. 1995;
Marques et al. 2001). Gauger et al. (2002) compared deposition estimates from
inferential modelling with estimates from throughfall measurements and canopy
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budget modelling and found an underestimation of about 50% by canopy budget
modelling for Level II monitoring plots in Germany stocked with spruce. For Swiss
long-term forest monitoring sites, Schmitt et al. (2005) found on an average 17
mmol.m 2 per year higher N-deposition rates estimated with an inferential method
than by throughfall measurements. Nevertheless, estimates of total deposition for
the study sites are plausible but are regarded as lower limits of true values.

Acid deposition on the canopy will induce interaction between rainwater and
foliage. Leaching of nutrients from the canopy may induce nutrient deficiencies
depending on the capacity of the trees to replenish the nutrient pools (Lindberg et al.
1986). When large quantities of N are assimilated in the canopy, the N-uptake by
roots may be reduced. This may increase nutrient imbalances due to the spatial
decoupling of N and base cation uptake (Harrison et al. 2000). Finally, the major
changes in the deposition have also affected canopy-rain interactions. A decrease in
the atmospheric emissions has reduced interaction between precipitation and cano-
py. As precipitation acidity is a major driving force for exchange of nutrient cations
at foliage surfaces and their subsequent leaching, a reduced acidity input results in
decreased exchange rates (Klemm 1989).

15.6 Conclusions

¢ N concentrations in open field precipitation, throughfall and stemflow at three beech
stands in the northwest German low mountain ranges differ substantially between
sites and pathways. However, the contributions of the different N-species NHZ,
NOj, and N, to the deposition fluxes are relatively similar between sites.

¢ The sources of solutes in the deposition pathways can be related to anthrogenic
air pollution, sea spray, deposition of organic compounds and canopy processes.

e Atmospheric deposition of most major components has declined over the last
two decades. Reductions of deposition of acids and S have been more pro-
nounced than reduction of N-input.

¢ Estimation of total N-deposition with the canopy budget model of Ulrich (1994)
most probably underestimates real input rates. However, total deposition esti-
mates can be regarded as lower limits of true values.

¢ According to the canopy budget model, N is taken up by the canopy of the beech
stands. The uptake of NHJ is higher than the uptake of NO;3 .

e The N-requirement of beech stands for growth increment may be fulfilled to a
substantial part by canopy uptake.

¢ Due to the decline of atmospheric deposition, the interactions between rainwater
and the canopy have also reduced.

Annex Tables

See Tables 15.11to15.19.
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