Chapter 15 Atmospheric Deposition and Canopy Interactions

H. Meesenburg, J. Eichhorn, and K.J. Meiwes

15.1 Introduction

Element inputs by atmospheric deposition form a major contribution to a number of element fluxes of forest ecosystems. During the last few decades, inputs from the atmosphere have significantly altered the geochemical cycles of forest ecosystems especially in heavily polluted areas of Central Europe where forests have remained major sinks for air pollution.

The deposition of acids such as sulphuric and nitric acids was a major environmental concern during recent decades (Galloway 1995). Acid deposition has caused the acidification of soils and freshwaters in large areas of North America and Europe (Johnson et al. 1991). The effects of soil acidification are the leaching of base cations from the soil (Matzner and Murach 1995), the release of aluminium (Al) ions and heavy metals into soil solution (Tyler 1983), reduced decomposition of soil organic matter, and reduced growth of fine roots (Godbold et al. 2003). The release of acid soil solutions to the hydrosphere is detrimental to aquatic ecosystems.

During the last two decades, deposition of acids has decreased substantially in Central Europe due to improved emission controls and the closing down of industry in eastern Germany after the reunion (Meesenburg et al. 1995). However, the deposition of nitrogen (N) compounds has decreased only slightly and has become an increasingly important fraction of the total deposition of acids (Wright et al. 1995). Despite reduced deposition of free acidity, the acid load to soils is still high because of high deposition of ammonium (NH_4^+) . The fate of elevated N-input on forest ecosystem remains partly unknown, but besides the impact on the acid/base balance of ecosystems there are some indications of increased tree growth, reduced root/shoot ratio, nutrient imbalances, reduced frost hardiness and elevated foliage consumption by insects (Binkley and Högberg 1997; Aber et al. 1998; Meiwes et al. 1999). In N-saturated ecosystems, soils have increased susceptibility for losses of nitrate (NO_3^-) to the hydrosphere and of trace gases to the atmosphere (Aber 2002).

The transfer of elements from the atmosphere to forests takes several pathways. According to Ulrich (1994), total deposition can be divided into wet deposition and interception deposition. The latter is composed of particulate interception and gaseous interception and is also referred as dry deposition. After deposition to the canopy of forest stands, the deposited elements may either be taken up by the canopy or washed from the surfaces by subsequent rainfall (Harrison et al. 2000).

Precipitation beneath the canopy of forest ecosystems contains both wet deposition and interception deposition. As the canopy acts as sink or source for solutes in precipitation passing through the canopy, stand precipitation cannot be used as a measure of total deposition (Horn et al. 1989). Total deposition can be calculated using wet deposition and independent estimates of dry deposition. Frequently used methods for the estimation of dry deposition are: canopy budget models (Draaijers et al. 1996), inferential modelling (van Leeuwen et al. 1996; Gauger et al. 2002) and gradient measurements of air pollutants (Sutton et al. 1995). The use of canopy budget models for forest ecosystems was extensively discussed by Draaijers (1999). Results of canopy budget models are very uncertain for the estimation of N-deposition, because dry deposition can form a high proportion of total deposition of N (Lindberg et al. 1986), and N is involved intensively in interaction processes with the foliage (Horn et al. 1989).

For the investigation of effects of atmospheric deposition on nutrient cycles of forest ecosystems and of temporal trends of element fluxes on ecosystem processes, long-term monitoring sites are of overwhelming importance. For this study, three mature beech forests located at the northern part of the central German mountain range have been compared. The three sites (Solling, Göttinger Wald and Zierenberg) are included in the Level II European Forest Intensive Monitoring programme (de Vries et al. 2001). At the Solling site, deposition measurements started in 1968. The Solling beech forest site together with the Solling spruce forest site has – to our knowledge – the longest continuous record of throughfall measurements globally. Deposition measurements at the Göttinger Wald site started in 1981 and at Zierenberg in 1989.

In this chapter, these long-term data sets will be used: (1) to characterise the chemical composition of open field deposition, throughfall and stemflow and to analyse relationships among major input components to relate them to different sources, (2) to describe the annual deposition fluxes and their temporal changes on the three sites, and (3) to analyse the interactions of precipitation inputs with the canopy of the stands.

Data collection and evaluation procedures. Element fluxes have been measured in open field deposition, throughfall and stemflow. Stand precipitation is the sum of throughfall and stemflow. Open field deposition and throughfall were monitored with samplers, which remained continuously open to the atmosphere (bulk samplers). Samples obtained with such samplers are composed of rainwater or snow and gravitational sedimented particles. In remote areas, there is little difference between element fluxes of bulk precipitation and wet-only precipitation (Ibrom 1993; Gauger et al. 2002). Open field deposition is being sampled at clearings located close to the monitoring sites. Here, we use the term open field deposition instead of bulk deposition, because the term bulk deposition is generally used for sampling of precipitation with bulk samplers without any regard to their location (open field or under the canopy). At the Solling and Göttinger Wald sites, samplers with 50-cm² surface area were used in summer months (May–October) until 1990. From 1990 onwards, funnel-flask samplers with 87.5-cm² surface area have been used for summer sampling. In winter months (November-April), buckets with surface area of 570 (until 1990) or 500 cm² (from 1990 onwards) have been used (Meiwes et al. 1984). At the Zierenberg site, funnel-flask samplers with 100-cm² surface area have been used in summer months and buckets with 500-cm² surface area in winter months (Brechtel and Hammes 1984; Eichhorn 1995). At the Solling and Göttinger Wald sites, six samplers have been used for open field deposition and 15 samplers for throughfall (Meesenburg et al. 1997). At the Zierenberg site, ten replicates have been used for open field deposition and 20 for throughfall. Coarse particles (e.g. litter) have been prevented from falling into the samplers by using a polyethylene mesh at the Solling and Göttinger Wald sites and a ceramic sieve at Zierenberg site. After recording the volumes, three composite samples were formed for each of open field deposition and throughfall for the Solling and Göttinger Wald sites, and four composite samples for the Zierenberg site for laboratory analysis.

Sampling devices and sampling procedures of the three sites were tested in comparison with 18 other methods for open field deposition and throughfall used within the framework of the ICP forest level II programme. The performance of the deposition monitoring at the study sites was found to be acceptable (Draaijers et al. 2001).

Stemflow has been sampled by fixing polyurethane spirals around the stems, which were coated with paraffine. Three to five replicates were installed, which were analysed separately (Solling and Göttinger Wald sites) or pooled to a composite sample (Zierenberg site).

Water flux via stemflow for Zierenberg and Solling has been estimated to be 15% of the total throughfall flux. At the Solling site, a value of 15% is close to the mean value of stemflow flux estimated by Benecke (1984) for the period 1969–1975. For Göttinger Wald, stemflow fluxes were obtained from regression functions between stemflow volume and throughfall (Gerke 1987).

Analytical methods are described by Fassbender and Ahrens (1977) and König and Fortmann (1996a–d) for the Solling and Göttinger Wald sites. In short, pH was measured potentiometrically. Sodium (Na⁺), potassium (K⁺), magnesium (Mg²⁺), calcium (Ca²⁺), and manganese (Mn²⁺) were determined by AAS until 1989, and since 1990 by ICP-AES. NH₄⁴, NO₃⁻ and chloride (Cl⁻) were analysed colorimetrically with a continuous flow system. Sulphate (SO₄²⁻) was measured by precipitation with Ba and by potentiometric titration of excess Ba with EDTA until 1982, from 1983 to 1992 by the methyl-thymol-blue method, and since 1993 by ICP-AES. Organic N (N_{org}) is calculated as the difference between total N (N_{tot}) (measured after digestion) and the sum of NH₄⁴ and NO₃⁻.

Because no independent estimates of interception deposition are available for the study sites over the whole observation period, we have used the canopy budget model developed by Ulrich (1994) for the calculation of total deposition. Annual fluxes of ions have been used for the calculation procedure. The canopy budget model of Ulrich (1994) estimates the interception deposition for element species A (ID_A), which are not adsorbed or leached from the canopy, from the difference of stand precipitation (SP_A) and open field precipitation (wet deposition OF_A). Interception deposition ID_A is the sum of particulate (ID_{part, A}) and gaseous deposition (ID_{gas, A}). Total deposition (TD_A) is the sum of wet deposition and interception deposition.

$$TD_A = OF_A + ID_A, \tag{15.1}$$

$$ID_A = ID_{part,A} + ID_{gas,A}, \qquad (15.2)$$

$$ID_A = SP_A - OF_A. \tag{15.3}$$

$$A = Na, Cl, SO_4$$

Particulate interception deposition ($ID_{part, A}$) is estimated from the ratio between interception deposition and open field precipitation of Na assuming that Na⁺ is only deposited by wet deposition and particulate interception. It is assumed that the particle size distribution of all deposited substances is similar, resulting in a similar deposition velocity. Another assumption is that particulate interception is caused to a large degree by fog droplets. In contrast to earlier formulations of the model by Ulrich (1983) and Bredemeier (1988), Ulrich (1994) extended the model for NH₄⁺ and NO₃⁻ implying the assumption of similar deposition velocities holds for particulates containing NH₄⁺ and NO₃⁻ particles. The assumption of similar deposition velocities is highly questionable especially for N-compounds (Spranger 1992):

$$f_{\rm Na} = \frac{\rm ID_{\rm Na}}{\rm OF_{\rm Na}},\tag{15.4}$$

$$ID_{part,A} = f_{Na} OF_A.$$
(15.5)

$$A = H, K, Mg, Ca, Mn, Al, Fe, NH_4, Cl, SO_4, NO_3$$

Gaseous deposition $(ID_{gas, A})$ of metal cations is assumed to be negligible.

$$ID_{gas,A} = 0. \tag{15.6}$$

$$A = Na, K, Mg, Ca, Mn, Al, Fe.$$

Gaseous deposition ($ID_{gas, A}$) of SO₂, HCl, HNO₃ and NH₃ is estimated from the difference of interception deposition and particulate deposition:

$$ID_{gas,A} = ID_A - ID_{part,A} = SP_A - OF_A - ID_{part,A}.$$

$$A = NH_4, Cl, SO_4, NO_3.$$
(15.7)

Gaseous deposition of SO_2 , HCl and HNO₃ causes an equivalent input of protons, gaseous deposition of NH_4^+ a consumption of protons:

$$ID_{gas,H} = ID_{gas,SO_2} + ID_{gas,Cl} + ID_{gas,NO_3} - ID_{gas,NH_4}.$$
 (15.8)

If particulate deposition of NH_4^+ and NO_3^- is higher than the difference between SP_A and OF_A , no gaseous deposition can be calculated.

The difference between total deposition and stand precipitation is interpreted as canopy budget (CB_A). Positive values are interpreted as leaching, negative values as uptake by the canopy:

$$CB_A = SP_A - TD_A = SP_A - OF_A - ID_A.$$
(15.9)

From the calculation scheme, it arises that either gaseous deposition (if $ID_{part} < SP_B-OF_B$) or uptake by the canopy (if $ID_{part} > SP_B-OF_B$) is calculated for NH_4^+ and NO_3^- . As both processes can occur concurrently (Veithen 1996; Garten et al. 1998), total deposition of NH_4^+ and NO_3^- is underestimated by the model. Moreover, the processes of canopy uptake and leaching are highly seasonal and the use of annual budgets disregards the seasonal nature of these processes. The assumptions involved in the model were not tested on these three sites and will need due consideration during the interpretations of model results.

Despite the limitations mentioned above, the canopy model of Ulrich (1994) has been applied to NH_4^+ and NO_3^- . Total deposition of nitrogen (N_{tot}) has been calculated as the sum of total deposition of NH_4^+ , total deposition of NO_3^- and open field deposition of N_{org} (Ulrich 1994).

15.2 Precipitation Chemistry

For characterisation of the chemical composition of atmospheric deposition, data for the period 1993–1998 were selected as all three study sites had information for this period. As precipitation chemistry has changed significantly during the last few decades, only the pattern for the selected period is described.

At the Solling site, open field precipitation chemistry is dominated by NH_4^+ (44% of cations on equivalent basis) and Na⁺ (23%), and H⁺, Ca²⁺, Mg²⁺ and K⁺ are only of minor importance in that order. Anions of significance are SO_4^{2-} (43%), NO_3^- (35%) and Cl⁻ (22%). Concentrations of NH_4^+ are higher than concentrations of NO_3^- (Table 15.1). The contribution of N_{org} to N_{tot} is about 7%.

At the Göttinger Wald site, 44% of the sum of cations in open field precipitation is NH_4^+ . Na⁺ (19%), Ca²⁺ (15%), and H⁺ (10%) also have some quantitative importance. The contribution to the sum of anions is 16% for Cl⁻, 39% for NO₃⁻ and 44% for SO₄²⁻.

At the Zierenberg site, NH_4^+ (30%) is the most abundant cation in open field precipitation, but the relative contributions of Ca^{2+} (27%) and Mg^{2+} (14%) are

40

43

40

42

41

51

35

19

7

11

15

9

10

20

41

50

49

44

50

39

45

elative contri stemflow from	bution of NH_4^+ , NO_3^- , and N_{org} t 1993 to 1998 at the study sites	to N _{tot} in open fie	ld precipitat	ion, through	fall and
Site		N _{tot}	$\mathrm{NH_4}^+$	NO_3^-	Norg
		$(\text{mmol } l^{-1})$	%	%	%
Solling	Open field deposition	125 (1)	52	41	7
	Throughfall	260 (18)	51	37	12

216 (28)

170(1)

293 (5)

303 (43)

174

454

310

Stemflow

Throughfall

Throughfall

Stemflow

Stemflow

Open field deposition

Open field deposition

Table 15.1 Mean concentrations and standard deviation (in parentheses) of total N (Ntot) and d _

much higher than at the Solling and Göttinger Wald sites. This may be related to higher input of dust particles and to other factors relating to methodology of collection and analysis. The contribution of Na⁺ to the sum of cations is 16%. The most abundant anion is SO_4^{2-} (45%), which is followed by NO₃⁻ (34%) and Cl⁻ (21%). Various anions have similar fractions in the open field precipitation on the three sites with values following the order: SO_4^{2-} (43–45%) > NO_3^{-} (34–39%) $> Cl^{-}$ (16–22%).

N_{tot} concentrations are generally highest in throughfall and lowest in open field precipitation (Table 15.1). After passing through the canopy, concentrations of N_{tot} in the precipitation increased by 108% at Solling, 72% at Göttinger Wald and 161% at Zierenberg compared to open field precipitation. This indicates a much higher interception of dry deposition at Zierenberg. The increase of concentrations of N_{tot} in stemflow was very similar at the three study sites (73-78%).

The relative contribution of the N species to N_{tot} is similar at the three study sites (Table 15.1). NH₄⁺ concentrations in open field deposition are higher than NO₃⁻ at all sites indicating that N-inputs are influenced to a large degree by animal husbandry. In throughfall and stemflow, the relative contribution of Norg to Ntot is generally higher than in open field precipitation indicating leaching of Norg from leaves and bark of the trees or from other sources of Norg in the canopy. At the Zierenberg site, the enrichment of the N-compounds in throughfall as compared to open field precipitation is much higher than at the Solling and Göttinger Wald sites. The enrichment of NH_4^+ in through fall is higher than that of NO_3^- at the Solling and Göttinger Wald sites and lower at the Zierenberg site. The strong enrichment of NO_3^- relative to NH_4^+ in through fall at Zierenberg may be explained by nitrification of NH₄⁺ in the canopy (Papen et al. 2002). (Table 15.1). However, Eichhorn (1995) attributed the enrichment of NO_3^- in throughfall to its leaching from the canopy. At the Solling and Göttinger Wald sites, the relative contribution of NH₄⁺ in stemflow is lower than in throughfall. This pattern may be partly explained by nitrification of NH₄⁺ at branches and stems.

Göttinger Wald

Zierenberg

Mean pH in throughfall is higher than in open field deposition at the Göttinger Wald and Zierenberg sites reflecting the buffering of acids in the canopy, but lower at Solling. pH is generally lower in stemflow than in open field deposition.

Sea spray is a major source for Cl^- , Na^+ , and Mg^{2+} in open field precipitation. An influence of road salt can be excluded since the sampling sites are far away from roads. Higher concentrations of Cl^- during the winter season are related to more frequent storm events. At the Solling site, the contribution of sea spray is 100% for Cl^- , 77% for Na⁺ and 44% for Mg²⁺ (calculated with Cl^- as index element). At the Göttinger Wald site, the influence of sea spray is somewhat lower than at the Solling site with values of 100% for Cl^- , 72% for Na⁺ and 29% for Mg²⁺. Sea spray is an important source at the Zierenberg site for Cl^- (100%) and Na⁺ (80%) whereas a low value for Mg²⁺ (10%) points to sources other than sea spray being more important, e.g. soil dust due to agricultural activities or Mg containing particles from different industrial processes such as coal burning or handling of bulk cargo.

The covariance analysis of the concentrations of solutes in open field precipitation, throughfall and stemflow at the three sites was undertaken by employing principal component analysis (SPSS version 6.1.2). Principal component analysis was used to find the least linear combinations of the parameters which were required to explain as much of the total variance of the data as possible. The major ions Na⁺, K⁺, Mg²⁺, Ca²⁺, H⁺, SO₄²⁻, Cl⁻, NH₄⁺ and NO₃⁻ and N_{org} were included for the analyses. Principal component analysis has been frequently used for assigning different sources to various solutes in the precipitation (Gorham et al. 1984; Feger 1986) and to describe the predominant processes occurring in ecosystems (Christophersen and Hooper 1992). Varimax rotation has been performed to find out the contribution of different processes.

As an example, results for open field precipitation at Solling are given in Table 15.2 for principal components with eigenvalues >1.0. Three components could be differentiated. Component 1, which explains 46% of the variance, has high loadings of NH_4^+ , NO_3^- , SO_4^{2-} and Ca^{2+} . These ions are negatively correlated to the amount of precipitation. NH_4^+ , NO_3^- and SO_4^{2-} can be ascribed to the emission of

	Component 1	Component 2	Component 3	Communality
Na ⁺	0.13	0.97	0.02	0.96
K^+	0.48	-0.15	0.64	0.67
Mg ²⁺	0.38	0.84	0.20	0.89
Ca ²⁺	0.75	0.27	0.27	0.71
H^+	0.21	-0.25	-0.71	0.62
SO_4^{2-}	0.94	0.21	0.08	0.93
Cl ⁻	0.09	0.96	-0.10	0.93
NH4 ⁺	0.90	0.14	0.10	0.84
NO_3^-	0.93	0.09	0.02	0.93
Norg	0.29	-0.08	0.79	0.72
Explained variance (%)	46.0	22.4	13.7	82.0

 Table 15.2
 Matrix of factor loadings (varimax rotation) and communalities of principal component analysis for concentrations of ions in open field deposition at Solling. Factor loadings above l0.6l are given in bold

 NH_3 , NO_x and SO_2 . NH_3 emissions can be attributed mainly to intensive farming practices such as animal husbandry and field application of faecal materials. NO_x is emitted to a high degree by vehicles, whereas SO_2 emissions can be ascribed mainly to large power plants. Ca^{2+} and K^+ can be attributed partly to the emission of dust. Thus, component 1 describes components of air pollution in open field precipitation.

Component 2 explains about one-quarter of the variance and has high loadings of Cl⁻, Na⁺, and Mg²⁺. This component can be ascribed to the influence of sea spray. Cl⁻, Na⁺ and Mg²⁺ are independent of the amount of precipitation. The third component explains 14% of the variance and has high loadings of N_{org} and K⁺ and a high negative loading of H⁺, which can be ascribed to plant-based organic substances.

The first principal component of stemflow at Solling explains over 60% of the variance, and has high loadings of Mg^{2+} , Ca^{2+} , H^+ and SO_4^{2-} and considerable loadings of K⁺ and NO_3^- (Table 15.3). Mg^{2+} , Ca^{2+} and K⁺ ions are leached from the vegetation, when buffering of H⁺ occurs whereas SO_4^{2-} and NO_3^- are involved in the charge balance. Thus, the first component can be interpreted as describing the input of acid depositions and their subsequent buffering by ion exchange. The second component in Table 15.3 explains 18% of the variance and has high loadings of NH_4^+ , NO_3^- and N_{org} which may account for the transformation of N-species and their interaction with the different tree compartments and canopy epiphytes. The third component explains 10% of the variance and has high loadings of Na⁺ and Cl⁻, which can be interpreted as sea spray.

The principal component analysis for open field precipitation at the Göttinger Wald and Zierenberg sites gives similar results as for the Solling site (Table 15.4). Also for throughfall data at Solling, principal components provided similar interpretation of results. For throughfall data at the Göttinger Wald and Zierenberg sites, canopy interactions are a major source affecting the variance of the data (Table 15.4).

For stemflow data at the Göttinger Wald and Zierenberg sites similar results as for the Solling site have been obtained (Table 15.4). In contrast to open field deposition, where the components can be interpreted as different sources of the

0				
	Component 1	Component 2	Component 3	Communality
Na ⁺	0.34	0.10	0.93	0.99
K ⁺	0.49	0.53	0.10	0.52
Mg ²⁺	0.83	0.19	0.49	0.96
Ca ²⁺	0.92	0.20	0.26	0.96
H^+	0.92	0.20	0.26	0.93
SO_4^{2-}	0.81	0.50	0.26	0.97
Cl ⁻	0.30	0.17	0.92	0.97
NH4 ⁺	0.07	0.93	0.19	0.90
NO_3^-	0.48	0.76	0.29	0.91
Norg	0.13	0.93	-0.03	0.72
Explained variance (%)	62.4	18.1	9.6	90.1

 Table 15.3
 Matrix of factor loadings (varimax rotation) and communalities of principal component analysis for concentrations of ions in stemflow at Solling. Factor loadings above 10.61 are given in bold

Table 15.4 Explained variance of principal components and sum of explained variance of principal component analysis (varimax rotation) for concentrations of ions in open field deposition (OF), throughfall (TF) and stemflow (SF) at Solling, Göttinger Wald and Zierenberg (interpretation of principal components is given by letters; the same interpretation means that the same elements have high loadings in certain components)

Site	Flux	Component 1 (%)	Component 2 (%)	Component 3 (%)	Σexplained variance (%)
Solling	OF	48.9 ^a	24.2 ^b	12.2 ^c	85.3
	TF	50.4 ^a	17.7 ^b	12.3 ^c	80.4
	SF	62.4 ^d	18.1 ^e	9.6 ^b	90.1
Göttinger Wald	OF	53.3 ^a	16.5 ^b	13.2 ^c	83.0
	TF	44.7 ^d	21.1 ^a	16.5 ^b	82.4
	SF	52.8 ^d	19.5 ^e	16.1 ^b	88.4
Zierenberg	OF	56.2 ^a	13.1 ^b	9.8 ^c	79.2
-	TF	59.6 ^{ba}	16.4 ^d	8.3 ^f	84.3
	SF	57.7 ^d	17.7 ^e	10.0 ^b	85.5

^aAir pollution

^bSea spray

^cOrganic deposition

^dCanopy leaching

^eN mineralisation processes

^fH⁺ buffering

solutes, transformation and interaction processes of the solutes with the vegetation seems to play an important role for the variance of the stemflow data.

15.3 Element Fluxes

We present the element fluxes with open field deposition, throughfall, stemflow, stand precipitation and total deposition separately for three periods of roughly a decade each (Tables 15.5–15.7). The period from 1969 to 1980 is only available for the Solling site. In 1981, the Göttinger Wald site was established and represents the beginning of the second period from 1981 to 1989. The Zierenberg site was established in 1990, which is the beginning of the third period from 1990 to 2002 and represents the period after emission control in Germany. Comparing the period 1990–2002 between the sites indicates higher fluxes of SO_4^{2-} , CI^- and Na^+ at the Solling site than at the Göttinger Wald and Zierenberg sites due to higher precipitation rates at the Solling site. N-fluxes in open field deposition were lowest at the Zierenberg site and highest at the Solling site, whereas they were quite similar in stand precipitation and total deposition at the three study sites. However, fluxes of K^+ , Mg^{2+} and Ca^{2+} are highest at the Zierenberg site.

Fluxes of most elements have decreased during the last 22 years at the Solling and Göttinger Wald sites (Tables 15.5 and 15.6). Decreasing trends have been detected for open field deposition, throughfall, stemflow and stand precipitation as

Table site du Versuc	15.5 Mean ring the perhamstalt)	annual rate: riods 1969-	s of open -1980 (1	field der 971–198	oosition (<i>Ol</i> 30 for NH,	^r), through $^+$, NO ₃ ⁻ ,	fall (TF) N _{tot} , N _c	, stemflow _{org}), 1981-	(<i>SF</i>), stand -1989, and	precipita 1990–20	tion (SP), a 02 (Data s	nd total dej source: No	oosition (TD) rdwestdeutso) at the Solling the Forstliche
Flux	Period	H_2O	Na^+	\mathbf{K}^{+}	Mg^{2+}	Ca^{2+}	H^{+}	Mn^{2+}	$\mathrm{SO_4^{2-}}$	CI^{-}	$\mathrm{NH_4}^+$	NO_3^-	N_{tot}	Norg
		(mm)					(mmol _c 1	m ⁻² per ye	ear)				(mmol m	⁻² per year)
OF	69–80	985	33	6	15	51	80	1.3	148	48	84	58	175	34
	81-89	1,145	36	6	11	36	78	1.4	123	47	85	69	181	28
	90-02	1,184	40	5	7	16	17	0.5	59	33	63	51	126	12
TF	69-80	729	45	48	26	96	88	10.7	207	67	75	63	201	61
	81-89	768	46	50	23	LL	57	10.0	183	99	66	80	202	27
	90-02	812	46	49	14	30	13	4.0	82	48	74	59	157	24
\mathbf{SF}	69-80	121	16	23	8	28	51	3.4	115	25	13	10	52	25
	81-89	122	16	20	7	24	44	2.8	82	22	15	15	42	16
	90-02	119	10	10	2	5	8	0.5	20	11	8	8	20	5
SP	69-80	850	61	72	33	124	138	14.1	322	92	87	73	253	86
	81-89	890	61	70	30	101	101	12.8	264	88	114	95	244	42
	90-02	931	55	59	16	35	21	4.5	102	59	82	67	178	29
0T	69–80	850	61	17	29	95	199	2.4	322	92	157	109	300	64
	81-89	890	61	15	19	62	204	2.5	264	88	143	117	289	47
	90-02	931	55	8	10	22	55	0.8	102	59	94	73	179	21

Table	15.6 Mean	annual rat	tes of ope	en field o	deposition	(OF), thro	ughfall (TF), stem	flow (SF), a	stand pred	cipitation (SP) and tol	tal deposition	n (TD) at the
Götting	ger Wald site	e during th	le periods	1981-1	989 and 15	90-2002 (Data sou	irce: Nordy	westdeutsch	le Forstlic	he Versuch	nsanstalt)	•	
Flux	Period	H_2O	Na^+	\mathbf{K}^{+}	${\rm Mg}^{2+}$	Ca ²⁺	H^{+}	Mn^{2+}	$\mathrm{SO_4}^{2-}$	CI^{-}	$\mathrm{NH_4}^+$	NO_3^{-}	$\mathbf{N}_{\mathrm{tot}}$	Norg
		(uuu)					(mmol _c	m ⁻² per ye	ear)				(mmol m	⁻² per year)
OF	81-89	750	28	6	12	56	40	0.5	108	32	61	61	141	22
	90-02	684	24	б	7	19	11	0.2	48	20	47	45	100	8
TF	81–89	516	25	38	21	88	16	1.2	128	39	63	57	137	21
	90-02	519	28	42	13	37	5	0.5	59	32	59	50	126	17
\mathbf{SF}	81–89	119	11	24	7	32	28	0.4	82	19	21	22	50	8
	90-02	76	7	14	2	7	ю	0.1	20	8	10	11	25	4
SP	81–89	636	36	62	28	121	44	1.6	210	58	84	79	187	28
	90-02	615	35	56	15	44	6	0.6	79	41	70	61	151	22
TD	81-89	636	36	10	16	75	132	0.7	210	58	89	84	187	31
	90-02	615	35	S	6	27	37	0.4	79	41	75	68	151	13

n (TD) at the		Norg	⁻² per year)	6	21	5	25	19
al deposition		N_{tot}	(mmol m	85	143	20	164	171
SP) and tot		NO_3^-		36	69	7	76	76
ipitation ($\mathrm{NH_4}^+$		39	54	8	62	81
stand prec	sanstalt)	Cl^{-}		22	54	6	63	63
flow (SF),	le Versuch	$\mathrm{SO_4}^{2-}$	ear)	45	75	16	91	91
TF), stem	e Forstlich	Mn^{2+}	m ⁻² per ye	0.2	0.5	0.1	0.5	0.4
oughfall (stdeutsch	H^{+}	(mmol _c	18	×	б	11	61
(OF), three	e: Nordwe	Ca^{2+}		38	72	6	82	LT
leposition	Data source	Mg^{2+}		19	4	5	49	39
n field d	-2002 (I	\mathbf{K}^{+}		7	67	13	80	14
es of ope	iod 1990	Na^+		26	46	7	53	53
annual rat	ing the per	H_2O	(mm)	752	527	LL	604	604
5.7 Mean	xg site dur.	Period		90-02	90-02	90-02	90-02	90-02
Table 1	Zierenbe	Flux		OF	TF	SF	SP	TD

well as for total deposition. Significant trends can be observed for SO_4^{2-} , H^+ , CI^- , Mg^{2+} , Ca^{2+} , Mn^{2+} and N-species (Table 15.8). In open field deposition, stemflow and total deposition, decreasing trends are also visible for K⁺. Fluxes of SO_4^{2-} decreased by 81–94% during the last 22 years and reflect the general trend of S emissions in Germany (Fig. 15.1) (Umweltbundesamt 2000; Gauger et al. 2002). Decreasing deposition rates of Mg^{2+} and Ca^{2+} can be attributed to reductions of dust emission in Central Europe. At the Zierenberg site, similar trends were observed although due to a shorter observation period the relative reduction of deposition was less than for the Solling and Göttinger Wald sites (Table 15.7). Significant negative trends can be observed for SO_4^{2-} , H^+ , Ca^{2+} and Mn^{2+} at Solling even though water fluxes increased during the period 1990–2002. For Cl⁻, increasing fluxes have been measured under the canopy at the Zierenberg site. Decreasing deposition rates for many elements have been observed also for other forest ecosystems in Lower Saxony (Meesenburg et al. 1995) and Hesse (Balazs 1998) as well as for most parts of Germany (Gauger et al. 2002; Matzner et al. 2004).

N deposition at the Solling site showed different trends during the periods 1971–1985 and 1985–2002. During the first period, fluxes of NH_4^+ , NO_3^- and N_{tot} showed no change or slightly increasing trend (Fig. 15.2). However, since 1985, a slightly decreasing trend was evident. N_{tot} fluxes have reduced by 30–55% during the period of 1981–2002 from about 36 to 22 kg ha⁻¹ per year. Fluxes of NH_4^+ and NO_3^- with stemflow decreased even more. For N_{org} , high flux rates occurred in the 1970s, whereas low rates were measured afterwards. Temporal trends of N_{org} fluxes should be treated cautiously, since N_{org} is calculated as the difference between N_{tot} and the inorganic N-components and any alteration in the analytical methods of any one of the three components may have substantially affected the N_{org} estimates.

A decrease in N-fluxes was observed at Göttinger Wald during the whole observation period (Table 15.8, Fig. 15.3). However, for NH₄⁺, N_{org}, and N_{tot} in throughfall, these trends were not significant. NH₄⁺ fluxes at the different pathways decreased by 30–50% within the last two decades. Reduction of NO₃⁻ was about 40% for stand precipitation. N_{tot} fluxes have reduced by about 35% (from about 29–17kg ha⁻¹ per year). For stemflow, relative reductions have been generally higher.

N fluxes during the period 1990–2002 were generally very similar at the study sites and the interannual variations showed the same pattern (Fig. 15.3, Tables 15.5–15.7). Open field N-deposition was highest at Solling and lowest at Zierenberg, whereas N-values in stand precipitation and total deposition were somewhat lower at Göttinger Wald than at Solling and Zierenberg. For a spruce stand at Solling, Ibrom et al. (1995) calculated by use of micro-meteorological methods a total deposition of N of 460 mmol m² per year, whereas total deposition at the same stand calculated with the model of Ulrich (1994) was only 285 mmol m⁻² per year. Marques et al. (2001) showed that dry deposition (particulate and gaseous) contributed 75% to total deposition at the Solling spruce stand. These results and similar results from other locations (Harrison et al. 2000; Zimmerling et al. 2000; Meesenburg et al. 2005) suggest that the canopy model may be underestimating total deposition of N (see Horn et al. 1989; Harrison et al. 2000).

Table 15.8 Tre	nds of solu	ate fluxes	with oper	n field dep	osition (0	F), throug	hfall (TF)), stemflow	(SF), stan	id precipita	ution (SP)	, and tota	deposition	n (TD,
according to Ulri	ich 1994) a	t the Sollin	ng and Gö	ttinger Wa	uld sites fro	m 1981 to	2002 and	at the Ziere	enberg site	from 1990	to 2002 (t	est of tren	id with corre	lation
coefficient after l	Pearson; o	no trend, -	+ significa	ant increas	ing trend p	≤ 0.05, ++	- highly si	gnificant ir	ncreasing tr	end $p \leq 0.0$	1, - sign	ificant dec	creasing trei	$\geq d$ pt
0.05, highly	y significar	nt decreasi	ing trend p	$p \le 0.01)$										
Site	Flux	H_2O	Na^+	\mathbf{K}^{+}	${\rm Mg}^{2+}$	Ca^{2+}	H^{+}	Mn^{2+}	$\mathrm{NH_4}^+$	NO_3^-	$\mathbf{N}_{\mathrm{tot}}$	$\mathrm{N}_{\mathrm{org}}$	$\mathrm{SO_4}^{2-}$	Cl^{-}
Solling	OF	0	0			I		I	I	I	I	I	I	I
	TF	0	0	0	 	I	I	Ι	0	I	I	0	I	Ι
	Ę													

(J min an	(
Site	Flux	H_2O	Na^+	K^{+}	${\rm Mg}^{2+}$	Ca^{2+}	H^{+}	Mn^{2+}	$\mathrm{NH_4}^+$	NO_3^{-}	$\mathbf{N}_{\mathrm{tot}}$	$N_{\rm org}$	$\mathrm{SO_4}^{2-}$	CI
Solling	OF	0	0	 	 	I	 	I	I	Ι	Ι	Ι	Ι	Ι
	TF	0	0	0	 	I	Ι	Ι	0	Ι	I	0	Ι	Ι
	\mathbf{SF}	0	 	 	 	I	I	Ι	Ι	Ι	I	Ι	Ι	Ι
	SP	0	I	0	 	I	I	I	I	Ι	I	0	Ι	I
	Ω	0	I	 	 	I	I	I	I	I	I	0	I	I
Göttinger Wald	OF	0	I	 	 	I	I	I	I	I	I	I	I	Ι
	TF	0	0	0	 	I	Ι	Ι	0	Ι	0	0	Ι	Ι
	\mathbf{SF}	I	I	 	 	I	I	I	I	Ι	I	Ι	Ι	I
	SP	0	0	0	 	I	I	I	I	I	I	I	I	Ι
	01	0	0	 	 	I	I	I	I	I	I	I	I	Ι
Zierenberg	OF	‡	0	I	0	0	Ι	Ι	0	0	0	0	I	0
	TF	‡	0	0	0	Ι	Ι	Ι	0	0	0	0	Ι	0
	\mathbf{SF}	‡	0	‡	0	I	I	I	0	0	0	‡	0	+
	SP	‡	0	0	0	I	I	I	0	0	0	+	I	+
	ΔT	‡	0	0	0	0	I	Ι	ō	0	0	0	Ι	+

Fig. 15.1 Time series of emission density of sulphur (mmol_c S m⁻²) in Germany, total deposition (mmol_c S m⁻²) and SO₂ concentration (μ g SO₂ m⁻³) in ambient air at Solling site (*SO*)

Mean Na⁺ fluxes in stand precipitation have been higher than in open field precipitation during the period 1990–2002 by a factor (ID/OF) of 0.49 at Göttinger Wald, 0.41 at Solling and 1.02 at Zierenberg sites. This factor (f_{Na} , see data collection and evaluation procedures) is used to calculate the particulate interception which is higher at the Zierenberg site than at the Solling and Göttinger Wald sites and may be caused by the high agricultural activity surrounding the Zierenberg site, and by higher aerodynamic roughness of the forest stand, which is situated at the slope of a relatively isolated mountain.

A high fraction of total acid inputs was contributed by NH_4^+ , where the acid inputs are given by the sum of H^+ , Mn^{2+} and NH_4^+ depositions. Despite decreasing NH_4^+ fluxes at the Solling and Göttinger Wald sites during the last two decades, the relative contribution of NH_4^+ to the fluxes of acids has increased significantly because of a considerable decrease in free acidity fluxes. During 1990–2002, the contribution of NH_4^+ to total acid deposition was 50–85% at Solling, 75–95% at Göttinger Wald and 40–65% at Zierenberg, whereas at the beginning of the 1970s, NH_4^+ contributed from 10 to 40% at the Solling site.

Annual element fluxes for open field deposition, throughfall and stemflow at Solling, Göttinger Wald, and Zierenberg are documented in Annex Tables 15.11–15.19.

15.4 Canopy Rain Interactions

Various tree compartments (leaves, twigs, branches and bark) act as sources or sinks for solutes in precipitation when they pass through the canopy. The canopy budget is commonly estimated by subtracting stand precipitation from total deposition

Fig. 15.2 Time series of annual fluxes of (a) NH_4^+ and (b) NO_3^- with open field deposition (*OF*), stand precipitation (*SP*) and total deposition (*TD*, according to Ulrich 1994) at Solling site

(canopy model by Ulrich 1994). Negative values can be interpreted as indication of leaching from the leaves (Langusch et al. 2003) and of dissolution of dry deposited particles, whereas positive values indicate a sink function, e.g. uptake by the canopy. Plant leaching may occur as a diffusion of organically complexed cations or as an exchange process, where nutrient cations such as K⁺, Mg²⁺, Ca²⁺ and Mn²⁺ are exchanged against H⁺ or NH₄⁺ (Klemm et al. 1989; Draaijers and Erisman 2005).

Mean values for canopy budgets have been negative for K^+ , Mg^{2+} , Ca^{2+} and Mn^{2+} , whereas they have been positive for H^+ , NH_4^+ and NO_3^- (Table 15.9). At the Zierenberg site, no retention of NO_3^- has been observed during the observation period. Retention of nitrogen by the canopy can be caused by (1) uptake by

Fig. 15.3 Time series of annual N_{tot} fluxes with stand precipitation at the Solling, Göttinger Wald and Zierenberg sites

Table 15.9 Average canopy budgets (total deposition–stand precipitation) for a number of elements during the periods 1969–1980 (Solling only, 1971–1980 for NH_4^+ , NO_3^-), 1981–1989 (Solling and Göttinger Wald), and 1990–2002 at the three sites

Site	Period	K^+	Mg ²⁺	Ca ²⁺	H^{+}	Mn ²⁺	NH_4^+	NO_3^-
				(mmo	$l_c m^{-2} p$	er year)		
Solling	1969–1980	-55	-5	-29	65	-11.8	70	36
	1981-1989	-56	-12	-39	103	-10.3	29	22
	1990-2002	-51	-6	-14	34	-3.7	12	6
Göttinger Wald	1981-1989	-50	-12	-46	88	-0.9	5	5
	1990-2002	-52	-6	-17	29	-0.2	6	7
Zierenberg	1990–2002	-65	-10	-5	50	-0.1	18	0

epiphytic algae and lichens, (2) immobilisation by micro-organisms (Stadler and Michalzik 2000), and (3) assimilation into the leaves (Garten et al. 1998). The last process is likely to be the most relevant one for the retention of N by the canopy (Lovett and Lindberg 1993).

Mean NH₄⁺ retention rates by the canopy decreased during the study period at the Solling site. For the measurement period of 1990–2002, NH₄⁺ retention by the canopy was estimated as: 12 mmol_c for Solling, 6 mmol_c for Göttinger Wald, and 18 mmol_c m⁻² per year for Zierenberg. The corresponding figures for NO₃⁻ were: 6 mmol_c (Solling), 7 mmol_c (Göttinger Wald) and 0 mmol_c m⁻² per year (Zierenberg), and for N_{tot}: 18 mmol_c (Solling), 13 mmol_c (Göttinger Wald) and 18 mmol_c m⁻² per year (Zierenberg). As mentioned above, these estimates are uncertain and are most probably an underestimation. For the sites of the Integrated Forest Study (IFS), mean inorganic N-retention rates of 10–160 mmol_c m⁻² per year were found (Lovett and Lindberg 1993), which brackets the values found for the sites of

Fig. 15.4 Canopy retention (N-uptake) of total N compared to requirement for growth increment and forest requirement (growth and turnover) at Solling, Göttinger Wald and Zierenberg (data for N increment and N requirement from Rademacher et al. (Chap. 8)

this study. Horn et al. (1989) calculated N-retention rates by the canopies of a healthy and a declining spruce stand at Fichtelgebirge, Bavaria, of 89 and 185 $\rm{mmol_c}~m^{-2}$ per year, respectively.

If all the assumptions for calculating the canopy retention of N were valid, the canopy absorption would cover 7% of N-demand for growth and turnover at the Solling stand which has been calculated to be 740 mmol m⁻² (Chap. 8). Similar values of N-demand calculated for the Göttinger Wald (770 mmol m⁻² per year) and Zierenberg (360 mmol m⁻² per year) stands (Chap. 8), of which about 1.5% and 5% will be taken up by the canopy from atmospheric deposition (Fig. 15.4). Compared to the N required for the growth increment, the Solling stand can cover its N-demand completely by uptake within the canopy, whereas the relative contribution of crown uptake is low for the Göttinger Wald (11%) and Zierenberg stands (25%). Annual N-retention for forest growth has been estimated as 43 mmol m⁻² for the stands at Solling, 38–63 mmol m⁻² for Göttinger Wald and 126 mmol m⁻² for Zierenberg (Chap. 8).

The assimilation of NH_4^+ and NO_3^- from precipitation has been experimentally confirmed by Brumme et al. (1992); Veithen (1996); Garten et al. (1998); and Harrison et al. (2000); Brumme et al. (1992) found that 6–12% of ¹⁵N applied to the aboveground parts of 3 to 9-years-old beech plants from the Solling site over 4 months was allocated to the roots. By the use of ¹⁵N labelled NH_4^+ and NO_3^- , they found higher uptake rates for NH_4^+ as compared to NO_3 indicating preferential uptake of NH_4^+ . In a similar study, Garten et al. (1998) found a retention of ¹⁵N labelled wet deposition of 12–26% for deciduous trees at Walker Branch Watershed, Tennessee, USA. Veithen (1996) used washing procedures at leaves from the Solling and Göttinger Wald stands for the study of canopy interactions and also found higher uptake rates for NH_4^+ as compared to NO_3^- . The preferential uptake of NH_4^+ is confirmed for the Solling and Zierenberg sites from the data of this study.

At the Solling site, uptake of NH_4^+ and NO_3 by the canopy decreased during the last 18 years (Table 15.10). At the Göttinger Wald and Zierenberg sites, no such

Table 15.10 Trends of canopy budgets at Solling and Göttinger Wald sites from 1981 to 2002 and at Zierenberg site from 1990 to 2002 (test of trend with correlation coefficient after Pearson; o no trend, + significant increasing trend $p \le 0.05$, ++ highly significant increasing trend $p \le 0.01$, - significant decreasing trend $p \le 0.05$, -- highly significant decreasing trend $p \le 0.01$)

significant decreas	ing tiona p	$5 \le 0.05$,	inginy sig	militant ucc	reasing trend	$p \ge 0.01$	
Site	K^+	Mg ²⁺	Ca ²⁺	H^{+}	Mn ²⁺	NH_4^+	NO_3^-
Solling	0	+	++		++	_	_
Göttinger Wald	0	++	++		++	0	0
Zierenberg	0	0	0		0	0	0

trend was observed. Brumme et al. (1992) and Veithen (1996) showed that NH_4^+ uptake is dependent on the NH_4^+ concentration in precipitation. Thus, decreasing uptake rates of NH_4^+ may be attributed to decreasing NH_4^+ concentrations in deposition. Veithen (1996) estimated the compensation point for NH_4^+ , where NH_4^+ uptake turns to NH_4^+ leaching, to be between 28 and 46 μ mol_c l⁻¹. As mean NH_4^+ concentrations in throughfall and stemflow at the Solling and Göttinger Wald sites are currently well above the compensation point found by Veithen (1996), NH_4^+ uptake is likely to take place at these stands.

Positive canopy budgets of H⁺ indicated proton buffering at all sites. The buffering can occur as an exchange process where H⁺ is exchanged against cations such as K⁺, Mg²⁺ or Ca²⁺ (Lindberg et al. 1986; Bredemeier 1988; Klemm et al. 1989, Matzner and Meiwes 1994; Draaijers and Erisman 1995). Mean proton buffering rates for 1990–2002 were calculated at 34 mmol_c (Solling), 29 mmol_c (Göttinger Wald) and 50 mmol_c m⁻² per year (Zierenberg). Between 1981 and 2002, proton buffering rates decreased significantly at the Solling and Göttinger Wald sites accompanied by a simultaneous decrease in the leaching rates of Mg²⁺ and Ca²⁺ (Table 15.10). Proton buffering rates decreased significantly at the Zierenberg site between 1990 and 2002.

Buffering of total acidity in the canopy has been calculated from the sink functions of H⁺ and NH₄⁺. At the study sites, 13–59% of the load of total acidity is buffered in the canopy on an annual basis (Fig. 15.5). In addition to decreasing loads of total acidity, the degree of buffering of acidity in the canopy has also decreased during the last 22 years. For the Göttinger Wald site, this might be explained by the more or less constant NH₄⁺ uptake, which causes a production of H⁺ in the canopy (Ulrich 1994). At the Solling site, the decrease of H⁺ buffering has been twice as high as the decrease of NH₄⁺ uptake. Hence, the H⁺ production by NH₄⁺ uptake has become more important. At the Zierenberg site, the degree of acid buffering in the canopy was generally higher compared to the other sites that also decreased during the study period (Fig. 15.5).

Leaching rates of K⁺ from the canopy have been similar at the three study sites, whereas leaching of Mn^{2+} has occurred only at the Solling site probably due to the higher Mn^{2+} availability in this acid soil (Table 15.9). The higher amount of leaching of Mn^{2+} from the canopy at the Solling site was confirmed by Veithen (1996). Leaching of Mg^{2+} was highest at the Zierenberg site because of high Mg foliar content and also high Mg^{2+} concentration in soil solution resulting from the high Mg^{2+} content of the magmatic bedrock. Leaching of Ca^{2+} from the canopy was

Fig. 15.5 Time series of buffering of acids in the canopy relative to total acidity load at the Zierenberg, Solling and Göttinger Wald sites

similar at the Solling and Göttinger Wald sites, but lower at the Zierenberg sites. Contrary to these results, Veithen (1996) found higher leaching rates for Ca^{2+} from the canopy at the Göttinger Wald site than at the Solling site, which were attributed to a better Ca^{2+} nutrition of the stand growing on calcareous substrate. Surprisingly, the Ca^{2+} availability of the soils and also foliar contents of the three sites were not reflected by the Ca^{2+} leaching rates from the canopy. Mohr et al. (2005) found a positive relation between leaching rates of Ca^{2+} and Mg^{2+} and foliar nutrient concentrations. Time series of canopy budgets indicate that leaching rates of Ca^{2+} , Mg^{2+} and Mn^{2+} decreased significantly during 1981 and 2002 at the Solling and Göttinger Wald sites (Table 15.10). A decrease in the leaching rates of H⁺. No significant trends of canopy budgets have been observed at the Zierenberg site for these ions.

15.5 Discussion

Atmospheric deposition of many major elements can be attributed almost quantitatively to human activities. The only important natural source of salts is of marine origin. Main sources of anthropogenic air pollutants are: combustion processes, industrial processes and agriculture. Combustion and industrial processes are mainly responsible for the emission of SO₂ and NO_x, whereas dust particles are released mainly through industrial processes. NH₃ is mainly emitted through agricultural activities related to animal farming (Umweltbundesamt 2000). Deposition rates at the study sites are moderate when compared to other study sites in Germany (Gauger et al. 2002), but are relatively high compared to other regions in Europe (Hauhs et al. 1989; de Vries et al. 2001). Compared to spruce stands, deposition at beech stands is generally lower (Meesenburg et al. 1995; Balazs 1998; Rothe et al. 2002, Matzner et al. 2004); Eichhorn et al. (2001) evaluated data from 49 beech plots across Europe with average total N-deposition of 136 mmol_c m⁻² per year (min-max: 59–210 mmol_c m⁻² per year). The study sites are with 151–179 mmol_c m⁻² per year among the European beech sites with above-average N-deposition. Compared to 144 intensive monitoring plots in Europe, Na⁺ scaling factors (f_{Na}) at the study sites are above average (medium value 0.34, de Vries et al. 2001), suggesting that the contribution of dry deposition to total deposition is more important than at most other forests in Europe.

Deposition rates of the most major elements decreased during the last two decades which is evident at the Solling and Göttinger Wald sites with long observation periods. Atmospheric deposition is primarily characterised by NH_4^+ , NO_3^- and SO_4^{2-} . During the 1970s and 1980s, H⁺also played a major role in precipitation chemistry. During the last two decades deposition of free acidity has decreased but that of potential acidity has remained high due to high NH₄⁺ deposition. The reductions of SO_4^{2-} deposition are related to reductions of SO_2 emission in western Germany (Umweltbundesamt 2000). Because H⁺ is mainly generated through the oxidisation of SO_2 to SO_4^{2-} , the H⁺ deposition decreased simultaneously. The reduction of acid depositions to central German forest ecosystems is attributed to the reduction of emissions, which became effective through legislation and the closing down of industrial units in eastern Germany after the reunion. There has been a reduction in dust emissions, decreasing the depositions of Ca²⁺ and Mg²⁺. This decease in cations may have consequences for the buffering of acids in precipitation and for the nutrition of the forest stands. N-deposition decreased only slightly, which is also in agreement with constantly high N-emissions in western Germany (Umweltbundesamt 2000). N-deposition at the three sites is currently well above the amount retained for the forest increment.

Estimates of total deposition of different N-species are very uncertain because of the involvement of several different deposition and transformation processes in the canopy (Marques et al. 2001). N-deposition into forests occurs as rainwater, as fog or in gaseous form and with several different N-species. The deposited N-compounds interact with the canopy including their assimilation into leaves and transformations of the N-species. Garten et al. (1998) argued that the assimilation of gaseous N-compounds was the most effective uptake process, whereas Harrison et al. (2000) estimated the uptake from wet deposition to be more important. N-leaching from the canopy is possible at certain growth phases. Due to the complex biochemical processes, estimates of total N-deposition with a simple approach such as the model of Ulrich (1994) should be viewed with due care. Because N-uptake and gaseous deposition cannot be independently calculated, an underestimation of total deposition is likely by this model. Alternative canopy budget models are more specific with respect to nitrogen, but require independent input parameters, which are sometimes difficult to estimate (Horn et al. 1989; Draaijers and Erisman 1995). Independent measurements with micro-meteorological methods at a spruce stand adjacent to the Solling beech stand suggested an undestimation of N-deposition of almost 50% by the Ulrich model (Ibrom et al. 1995; Marques et al. 2001). Gauger et al. (2002) compared deposition estimates from inferential modelling with estimates from throughfall measurements and canopy

budget modelling and found an underestimation of about 50% by canopy budget modelling for Level II monitoring plots in Germany stocked with spruce. For Swiss long-term forest monitoring sites, Schmitt et al. (2005) found on an average 17 mmol_cm⁻² per year higher N-deposition rates estimated with an inferential method than by throughfall measurements. Nevertheless, estimates of total deposition for the study sites are plausible but are regarded as lower limits of true values.

Acid deposition on the canopy will induce interaction between rainwater and foliage. Leaching of nutrients from the canopy may induce nutrient deficiencies depending on the capacity of the trees to replenish the nutrient pools (Lindberg et al. 1986). When large quantities of N are assimilated in the canopy, the N-uptake by roots may be reduced. This may increase nutrient imbalances due to the spatial decoupling of N and base cation uptake (Harrison et al. 2000). Finally, the major changes in the deposition have also affected canopy-rain interactions. A decrease in the atmospheric emissions has reduced interaction between precipitation and canopy. As precipitation acidity is a major driving force for exchange of nutrient cations at foliage surfaces and their subsequent leaching, a reduced acidity input results in decreased exchange rates (Klemm 1989).

15.6 Conclusions

- N concentrations in open field precipitation, throughfall and stemflow at three beech stands in the northwest German low mountain ranges differ substantially between sites and pathways. However, the contributions of the different N-species NH₄⁺, NO₃⁻, and N_{org} to the deposition fluxes are relatively similar between sites.
- The sources of solutes in the deposition pathways can be related to anthrogenic air pollution, sea spray, deposition of organic compounds and canopy processes.
- Atmospheric deposition of most major components has declined over the last two decades. Reductions of deposition of acids and S have been more pronounced than reduction of N-input.
- Estimation of total N-deposition with the canopy budget model of Ulrich (1994) most probably underestimates real input rates. However, total deposition estimates can be regarded as lower limits of true values.
- According to the canopy budget model, N is taken up by the canopy of the beech stands. The uptake of NH₄⁺ is higher than the uptake of NO₃⁻.
- The N-requirement of beech stands for growth increment may be fulfilled to a substantial part by canopy uptake.
- Due to the decline of atmospheric deposition, the interactions between rainwater and the canopy have also reduced.

Annex Tables

See Tables 15.11to15.19.

Table 1:	5.11 Rates	of open f	field deposi	ition at Sol	ling during	the period 1	(969–2002	(Data source	e: Nordwe	stdeutsche	Forstliche V	ersuchsanstalt)	
Year	$\rm H_2O$	Na^+	$\mathbf{K}^{\scriptscriptstyle +}$	${\rm Mg}^{2+}$	Ca^{2+}	H^{+}	Mn^{2+}	$\mathrm{SO_4}^{2-}$	CI^-	$\mathrm{NH_4}^+$	NO_3^-	N _{tot}	$\mathrm{N}_{\mathrm{org}}$
	(mm)					(mmo	$l_c m^{-2}$					(mmol m ⁻²)	
1969	1,064	28	7.2	15.6	41	68.5	0.7	150	44				
1970	1,479	37	7.4	10.7	68	109.1	1.1	170	58				
1971	810	26	11.8	32.1	71	70.4	0.7	138	36	72	44	135	19
1972	910	22	9.2	14.8	109	91.3	0.4	157	30	64	63	183	54
1973	1,037	53	10.0	16.5	38	99.2	2.6	132	72	95	57	165	13
1974	1,235	32	6.1	11.5	32	65.5	1.8	145	49	83	53	164	29
1975	884	28	8.2	10.7	37	82.4	1.1	158	40	80	51	166	35
1976	688	43	9.0	14.8	40	60.5	1.1	143	55	79	49	163	35
1977	897	42	14.3	18.1	58	84.3	3.3	158	56	101	55	198	42
1978	950	39	11.5	14.0	47	75.4	1.1	150	61	111	69	223	43
1979	845	21	6.7	10.7	34	85.3	1.1	122	30	78	71	188	39
1980	1,018	30	8.4	13.2	35	68.5	0.7	152	39	LL	64	169	28
1981	1,544	43	13.3	18.1	46	89.3	2.9	140	50	87	79	208	42
1982	867	29	7.5	12.0	52	64.5	2.5	146	36	70	99	154	17
1983	1,029	44	10.6	12.2	37	61.5	1.3	131	54	75	57	156	24
1984	1,217	35	10.3	10.6	38	126.0	1.0	135	76	66	71	202	33
1985	1,071	30	10.0	9.5	47	85.3	1.6	145	38	112	87	209	17
1986	1,209	36	7.8	8.5	35	114.1	0.6	66	48	81	62	195	52
1987	1,204	32	6.8	7.0	25	58.5	0.6	122	39	92	75	207	40
1988	1,214	46	8.0	11.4	24	57.6	1.8	101	46	80	64	157	15
1989	949	32	5.4	9.0	23	41.7	0.8	85	40	67	57	138	15
1990	1,040	51	11.5	13.0	22	14.9	0.8	78	42	103	52	181	26
1991	837	40	5.0	9.7	22	7.9	1.0	56	30	52	43	103	6
1992	1,219	62	8.3	12.2	29	5.0	0.7	83	41	LL	57	154	20
1993	1,198	56	5.9	11.2	24	6.3	0.4	72	33	63	55	136	15
												(00)	ntinued)

Table 1	5.11 (conti	inued)											
Year	H_2O	Na^+	\mathbf{K}^{+}	${\rm Mg}^{2+}$	Ca^{2+}	H^{+}	Mn^{2+}	$\mathrm{SO_4}^{2-}$	CI^{-}	$\mathrm{NH_4}^+$	NO_3^-	$\mathbf{N}_{\mathrm{tot}}$	$N_{\rm org}$
	(mm)					(mmo	$ol_c m^{-2}$)					(mmol m ⁻²)	
1994	1,386	41	4.9	8.4	16	20.5	0.5	69	38	62	54	125	8
1995	1,321	46	4.6	7.4	12	25.8	0.5	69	46	69	55	131	8
1996	928	26	2.8	4.2	10	17.9	0.3	49	23	53	46	103	0
1997	1,008	29	3.1	5.2	13	17.7	0.4	48	28	54	43	105	7
1998	1,575	39	5.9	6.3	15	27.8	0.6	69	39	74	66	147	7
1999	1,109	37	4.6	5.3	11	18.0	0.4	4	33	53	46	106	7
2000	1,131	33	4.6	4.4	10	16.6	0.4	46	28	57	49	119	13
2001	1,187	29	3.3	4.5	10	19.5	0.9	41	27	48	48	112	17
2002	1,451	27	4.5	4.3	10	25.3	0.2	46	28	58	49	122	15

Table 1:	5.12 Throu	ghfall flu:	xes at Soll	ing during	the period j	969-2002 (Data sourc	e: Nordwest	tdeutsche	Forstliche V	'ersuchsanst	alt)	
Year	$\rm H_2O$	Na^+	$\mathbf{K}^{\!\!\!+}$	${\rm Mg}^{2+}$	Ca^{2+}	H^{+}	Mn^{2+}	$\mathrm{SO_4}^{2-}$	CI_	$\mathrm{NH_4}^+$	NO_{3}^{-}	Ntot	$N_{\rm org}$
	(mm)					(mmo	$l_c m^{-2}$)					(mmol m ⁻²)	
1969	793	40	46.8	24.7	104	77.4	10.9	195	61				
1970	1,035	51	46.8	28.0	129	113.1	8.4	258	86				
1971	541	42	32.7	30.5	106	90.3	8.4	179	61	58	52	129	19
1972	623	31	47.1	22.2	126	76.4	6.6	202	51	52	54	159	54
1973	759	67	46.8	28.8	93	83.3	10.9	188	95	LL	69	185	39
1974	832	48	66.5	26.3	85	60.5	16.4	144	74	76	57	191	58
1975	632	44	47.8	23.0	87	89.3	10.9	204	63	48	60	203	81
1976	550	50	76.0	29.6	96	79.4	10.6	247	78	91	51	229	86
1977	745	47	47.1	25.5	93	116.1	15.3	231	68	76	56	204	72
1978	770	44	49.4	26.3	93	100.2	12.7	238	67	100	79	271	92
1979	710	35	28.1	18.9	65	84.3	7.3	180	35	85	80	221	56
1980	762	43	45.5	23.9	74	85.3	10.6	220	65	84	76	216	56
1981	1,050	53	46.6	26.3	82	83.3	13.1	202	64	<i>6L</i>	81	201	41
1982	562	37	39.0	22.8	76	51.4	8.5	187	59	81	84	185	20
1983	652	54	52.1	22.6	70	46.4	9.6	151	80	78	64	164	21
1984	832	50	57.7	25.3	81	93.7	11.8	222	69	102	78	210	30
1985	692	39	56.6	27.2	100	83.3	13.3	238	70	156	133	303	24
1986	838	42	39.0	18.6	68	56.9	6.5	150	60	<i>6L</i>	73	170	19
1987	795	38	72.7	24.2	76	35.4	11.3	208	58	120	67	212	26
1988	844	57	42.7	23.7	71	37.3	8.9	165	78	104	69	186	26
1989	647	41	45.9	19.2	52	24.6	7.0	122	55	95	73	191	33
1990	737	62	74.7	23.9	49	17.8	6.2	119	67	95	60	180	25
1991	603	54	46.2	18.8	50	10.3	7.4	97	56	64	61	140	16
1992	834	99	T.TT	21.3	47	8.8	4.5	114	58	68	64	154	22
1993	842	57	31.5	17.5	42	10.8	3.7	100	44	82	69	171	21
												(cont	(pənui,

Table 1.	5.12 (conti	inued)											
Year	H_2O	Na^+	\mathbf{K}^{+}	${\rm Mg}^{2+}$	Ca^{2+}	H^{+}	Mn^{2+}	$\mathrm{SO_4}^{2-}$	CI^{-}	$\mathrm{NH_4}^+$	NO_3^-	N_{tot}	$N_{\rm org}$
	(mm)					(mmo	${ m ol}_{ m c}~{ m m}^{-2}$)					$(mmol m^{-2})$	
1994	889	44	28.8	14.1	29	26.0	2.9	83	46	53	58	127	16
1995	863	51	85.8	16.1	25	17.1	4.2	106	59	73	58	148	16
1996	652	34	36.2	10.8	24	14.5	3.8	84	38	73	61	146	12
1997	069	35	30.7	10.3	24	12.3	3.3	63	40	99	54	136	15
1998	1,068	47	48.7	13.4	26	12.6	3.6	94	53	126	64	246	56
1999	736	41	39.4	10.1	20	10.3	3.7	50	4	75	54	153	25
2000	747	35	57.7	10.1	17	10.7	2.3	54	39	63	48	149	37
2001	912	37	30.8	9.6	22	11.5	3.6	54	42	62	58	146	26
2002	982	30	44.2	7.8	18	8.9	2.6	53	36	69	56	150	25

$ (mmol_{c} m^{-2}) $	5.13 Stemflow fluxes at Solling dur H ₂ O Na ⁺ K ⁺ M	uflow fluxes at Solling dur Na ⁺ K ⁺ M	es at Solling dur K ⁺ M	M M	ing the [g ²⁺	period 19t Ca ²⁺	<u>9–2002 (1</u> H ⁺	Data source Mn ²⁺	: Nordwestd SO4 ²⁻	cutsche F	orstliche Ve NH4 ⁺	rsuchsanstalt NO ₃ ⁻	t) N _{tot}	Norg
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(um)))	2		1	(mm)	$ol_c m^{-2})$				2	$(mmol m^{-2})$	
52.6 2.5 88 21 49.6 1.8 74 15 6 7 16 31 37.7 2.9 79 20 4 16 21 37.7 2.9 79 20 4 6 7 16 31 37.7 2.9 70 20 4 6 22 11 47.6 5.8 130 23 21 11 8 73 47.6 5.8 130 23 21 11 11 14 10 54.6 3.3 112 24 13 11 14 14 20 51.6 2.5 90 22 11 12 23 24 51.6 2.5 112 22 114 14 50 22 51.6 2.5 11 145 53 24 22 27.0 2.0 2.0 2.0	138 16 27.4 7.4 30	16 27.4 7.4 30	27.4 7.4 30	7.4 30	30		77.4	3.6	180	18				
49.6 1.8 74 15 6 7 16 3 37.7 2.9 79 20 4 10 41 17 37.7 2.9 79 20 4 6 22 11 37.7 2.9 79 20 4 6 22 11 47.6 5.8 130 23 21 11 131 41 30.8 2.2 56 37 10 8 29 21 51.6 2.5 90 22 11 10 63 41 49.6 2.9 97 33 14 14 50 22 49.6 2.9 97 33 14 14 50 22 49.6 2.9 97 33 14 14 50 22 47.0 2.0 2.0 2.1 14 14 50 22 49.6 5.1 145 13 14 14 57 24 27.0 2.0 <td>92 12 22.3 7.4 25</td> <td>12 22.3 7.4 25</td> <td>22.3 7.4 25</td> <td>7.4 25</td> <td>25</td> <td></td> <td>52.6</td> <td>2.5</td> <td>88</td> <td>21</td> <td></td> <td></td> <td></td> <td></td>	92 12 22.3 7.4 25	12 22.3 7.4 25	22.3 7.4 25	7.4 25	25		52.6	2.5	88	21				
32.7 2.2 87 29 14 10 41 17 37.7 2.9 79 20 4 6 22 11 66.5 7.3 268 38 17 8 73 48 47.6 5.8 130 23 21 11 131 41 30.8 2.2 56 37 10 8 73 48 54.6 3.3 112 24 13 11 14 20 51.6 2.5 90 22 11 10 81 21 49.6 2.5 91 2.2 11 14 50 22 55.6 3.6 120 22 11 14 50 22 55.6 3.6 120 22 11 14 50 22 55.6 3.6 120 22 11 14 50 22 57.5 </td <td>105 13 13.6 4.1 23</td> <td>13 13.6 4.1 23</td> <td>13.6 4.1 23</td> <td>4.1 23</td> <td>23</td> <td></td> <td>49.6</td> <td>1.8</td> <td>74</td> <td>15</td> <td>9</td> <td>7</td> <td>16</td> <td>б</td>	105 13 13.6 4.1 23	13 13.6 4.1 23	13.6 4.1 23	4.1 23	23		49.6	1.8	74	15	9	7	16	б
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	118 10 17.4 4.9 34	10 17.4 4.9 34	17.4 4.9 34	4.9 34	34		32.7	2.2	87	29	14	10	41	17
	134 12 25.8 8.2 12	12 25.8 8.2 12	25.8 8.2 12	8.2 12	12		37.7	2.9	79	20	4	9	22	11
47.65.813023211113141 30.8 2.2 56 37 10 8 29 21 54.6 3.3 112 24 13 11 44 20 51.6 2.5 90 22 11 10 63 41 49.6 2.9 97 33 14 14 50 22 55.6 3.6 120 23 15 14 50 22 55.6 3.6 120 23 15 14 50 22 57.6 3.6 120 23 15 14 50 22 270 20 32 93 14 14 50 22 270 20 33 14 14 50 22 270 20 33 25 17 14 49 45.6 3.2 93 25 17 14 35 277 21 14 14 53 24 427 2.4 77 14 14 35 57.5 2.3 68 21 14 14 35 57.5 2.3 68 22 117 14 35 387 3.2 81 12 12 33 17 387 2.4 20 33 26 51 7 31.7 2.5 60 22 14 12 33 31.7	160 31 35.8 14.0 43	31 35.8 14.0 43	35.8 14.0 43	14.0 43	43		66.5	7.3	268	38	17	8	73	48
30.8 2.2 56 37 10 8 29 21 54.6 3.3 112 24 13 11 44 20 51.6 2.5 90 22 11 10 63 41 49.6 2.9 97 33 14 14 50 22 55.6 3.6 120 23 15 14 14 50 22 57.6 3.6 120 23 15 14 14 50 22 27.0 20 23 15 11 13 54 29 27.0 20 23 15 11 13 54 29 27.0 20 32 21 14 14 50 29 57.5 2.3 68 21 14 14 35 7 57.5 2.3 68 21 12 12 12 12	115 15 28.9 8.2 35	15 28.9 8.2 35	28.9 8.2 35	8.2 35	35		47.6	5.8	130	23	21	11	131	41
54,6 3.3 112 24 13 11 44 20 51.6 2.5 90 22 11 10 63 41 49.6 2.9 97 33 14 14 50 22 55.6 3.6 120 23 15 14 50 22 64.5 5.1 145 27 11 13 54 29 27.0 2.0 58 20 10 9 34 14 45.6 3.2 93 25 17 14 50 22 45.6 3.2 93 25 17 14 49 19 57.5 2.3 68 21 14 14 35 7 42.7 2.4 77 14 14 35 7 57.5 2.3 68 21 14 35 7 34.7 2.4 71	89 17 18.7 8.2 24	17 18.7 8.2 24	18.7 8.2 24	8.2 24	24		30.8	2.2	56	37	10	8	29	21
51.6 2.5 90 22 11 10 63 41 49.6 2.9 97 33 14 14 50 22 55.6 3.6 120 23 15 14 50 22 64.5 5.1 145 27 11 13 54 29 270 2.0 58 20 10 9 34 14 45.6 3.2 93 25 17 14 49 19 45.6 3.2 93 25 17 14 49 19 47.7 2.4 77 16 26 20 34 7 42.7 2.4 77 16 26 20 37 7 34.7 2.4 77 16 26 20 51 7 38.7 3.2 81 22 18 26 51 7 38.7 2.2 81 12 12 12 33 17 38.7 2.2 60 22 14 12 33 27 31.7 2.5 60 22 14 12 33 21 30.8 2.8 61 31 12 33 21 33 34.7 2.4 7 33 22 34 22 31.7 2.5 10 9 9 9 20 30.8 2.8 61 31 12 34 20 <	116 18 24.3 7.4 27	18 24.3 7.4 27	24.3 7.4 27	7.4 27	27		54.6	3.3	112	24	13	11	44	20
49.6 2.9 97 33 14 14 50 22 55.6 3.6 120 23 15 14 53 24 64.5 5.1 145 27 11 13 54 29 27.0 2.0 58 20 10 9 34 14 45.6 3.2 93 25 17 14 49 19 45.6 3.2 93 25 17 14 49 19 45.6 2.0 88 21 14 14 35 7 42.7 2.4 77 16 26 20 51 7 34.7 2.4 77 16 26 51 7 38.7 3.2 81 12 12 12 17 38.7 2.8 60 2.2 18 26 51 7 38.7 2.8 11 <	112 17 18.2 5.8 22	17 18.2 5.8 22	18.2 5.8 22	5.8 22	22		51.6	2.5	90	22	11	10	63	41
55.6 3.6 120 23 15 14 53 24 64.5 5.1 145 27 11 13 54 29 27.0 2.0 58 20 10 9 34 14 45.6 3.2 93 25 17 14 49 19 45.6 3.2 93 25 17 14 49 19 57.5 2.3 68 21 14 14 35 7 42.7 2.4 77 16 26 20 51 7 34.7 2.4 77 16 26 20 51 7 34.7 2.4 77 13 12 12 33 17 38.7 3.2 81 12 12 33 17 33 31.7 2.5 60 2.5 16 20 33 20 30.8	112 13 21.2 7.4 26	13 21.2 7.4 26	21.2 7.4 26	7.4 26	26		49.6	2.9	67	33	14	14	50	22
	162 16 27.1 8.2 32	16 27.1 8.2 32	27.1 8.2 32	8.2 32	32		55.6	3.6	120	23	15	14	53	24
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	199 21 39.1 9.9 35	21 39.1 9.9 35	39.1 9.9 35	9.9 35	35		64.5	5.1	145	27	11	13	54	29
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	66 14 13.4 5.2 18	14 13.4 5.2 18	13.4 5.2 18	5.2 18	18		27.0	2.0	58	20	10	6	34	14
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	136 18 23.7 8.3 34	18 23.7 8.3 34	23.7 8.3 34	8.3 34	34		45.6	3.2	93	25	17	14	49	19
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	127 15 16.8 6.7 21	15 16.8 6.7 21	16.8 6.7 21	6.7 21	21		57.5	2.3	68	21	14	14	35	٢
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	101 10 12.1 5.2 19	10 12.1 5.2 19	12.1 5.2 19	5.2 19	19		42.7	2.4	LL	16	26	20	52	9
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	125 14 16.2 6.1 21	14 16.2 6.1 21	16.2 6.1 21	6.1 21	21		53.6	2.0	81	22	18	26	51	٢
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	119 12 19.7 6.4 21	12 19.7 6.4 21	19.7 6.4 21	6.4 21	21		34.7	2.4	74	17	13	12	33	17
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	126 23 23.3 8.1 24	23 23.3 8.1 24	23.3 8.1 24	8.1 24	24		38.7	3.2	81	29	12	12	34	22
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	97 15 18.0 6.8 20	15 18.0 6.8 20	18.0 6.8 20	6.8 20	20		31.7	2.5	09	22	14	12	35	20
	110 25 19.5 7.4 20	25 19.5 7.4 20	19.5 7.4 20	7.4 20	20		30.8	2.8	61	31	13	11	34	20
4.0 0.2 12 6 3 4 9 3 8.4 0.5 22 7 6 8 17 4	91 9 8.1 3.2 8	9 8.1 3.2 8	8.1 3.2 8	3.2 8	8		6.0	0.6	25	10	6	6	20	С
8.4 0.5 22 7 6 8 17 4	72 5 4.4 1.4 3	5 4.4 1.4 3	4.4 1.4 3	1.4 3	б		4.0	0.2	12	9	б	4	6	б
	140 9 7.6 2.3 6	9 7.6 2.3 6	7.6 2.3 6	2.3 6	9		8.4	0.5	22	7	9	8	17	4

	N_{org}		4	4	5	б	4	4	5	5	5
	$\mathbf{N}_{\mathrm{tot}}$	$(mmol m^{-2})$	17	20	24	18	19	25	19	20	20
	NO_3^-		8	8	10	8	8	11	8	8	7
	$\mathrm{NH_4}^+$		9	8	10	7	7	10	9	9	8
	CI^-		10	13	10	9	11	6	11	9	6
	$\mathrm{SO_4}^{2-}$		19	23	28	14	16	14	11	11	10
	Mn^{2+}	$ol_c m^{-2}$)	0.3	0.4	0.5	0.3	0.3	0.3	0.2	0.3	0.2
	H^{+}	(mm	10.0	7.1	9.9	5.0	5.0	4.6	3.6	2.1	2.0
	Ca^{2+}		4	4	5	4	4	б	б	б	2
	${\rm Mg}^{2+}$		2.2	2.5	2.2	1.4	1.8	1.7	1.6	1.4	0.9
	\mathbf{K}^{+}		6.0	14.7	14.0	7.0	10.7	8.6	8.8	11.1	10.6
inued)	Na^+		10	11	8	9	10	6	6	8	7
5.13 (cont	H_2O	(mm)	133	129	98	104	160	110	112	137	147
Table 1:	Year		1994	1995	1996	1997	1998	1999	2000	2001	2002

Table 15	5.14 Rates	of open f	field deposi	ition at Göt	tinger Wald	during the	period 19	81–2002 (D	ata source:	Nordweste	leutsche Fo	stliche Versuchsa	nstalt)
Year	H_2O	Na^+	\mathbf{K}^{+}	${\rm Mg}^{2+}$	Ca^{2+}	H^{+}	Mn^{2+}	$\mathrm{SO_4}^{2-}$	Cl^{-}	$\mathrm{NH_4}^+$	NO_3^-	N _{tot}	$\mathbf{N}_{\mathrm{org}}$
	(mm)					(mmo	${\rm ol_c}~{\rm m^{-2}})$					(mmol m ⁻²)	
1981	1,252	35	20.2	17.6	76	52.5	0.7	160	50	73	62	169	34
1982	550	18	8.6	9.6	46	20.4	0.7	82	23	43	41	112	28
1983	635	32	7.1	10.4	43	31.9	0.6	96	32	59	51	129	23
1984	754	21	6.2	11.3	55	49.4	0.8	113	25	59	59	148	30
1985	621	22	8.9	9.4	49	26.2	0.5	92	27	68	51	142	23
1986	784	25	6.9	9.9	45	43.7	0.4	100	32	58	99	151	28
1987	006	26	9.3	13.0	76	54.8	0.3	129	33	75	73	162	15
1988	763	45	7.4	15.9	58	45.3	0.4	118	45	99	84	155	15
1989	495	24	3.4	9.5	36	38.2	0.2	85	27	51	58	66	5
1990	546	39	3.0	11.3	32	19.6	0.3	70	30	53	54	115	6
1991	496	37	3.2	11.2	35	12.4	0.2	67	29	51	54	113	8
1992	686	38	3.6	12.5	37	17.0	0.3	84	31	67	99	142	6
1993	715	30	3.6	8.2	24	3.4	0.3	53	15	46	43	102	12
1994	758	18	2.8	4.4	15	17.5	0.3	52	15	49	44	96	13
1995	598	20	4.1	4.8	11	0.8	0.2	42	21	42	35	82	5
1996	589	14	2.7	3.2	10	1.2	0.2	36	12	42	37	85	5
1997	664	21	2.8	8.2	25	9.6	0.4	4	18	44	40	89	5
1998	893	21	2.7	4.7	14	21.6	0.3	47	19	52	50	109	7
1999	635	18	2.6	3.7	11	11.7	0.2	31	14	42	38	87	9
2000	719	18	3.3	4.1	14	8.1	0.3	32	13	39	37	85	6
2001	718	18	2.7	4.0	11	11.7	0.1	29	17	35	36	83	12
2002	868	18	3.2	4.4	15	14.7	0.1	39	21	51	45	107	6

Table 15	.15 Throug	thfall flux	es at Göttil	nger Wald d	luring the l	period 1981	I-2002 (D	ata source: N	Nordwestd	eutsche Fo	rstliche Vei	rsuchsanstalt)	
Year	H_2O	Na	K	Mg	Са	Н	Mn	$\mathrm{SO_4}^{2-}$	CI	NH_4	NO_3	Ntot	$\mathbf{N}_{\mathrm{org}}$
	(mm)					(mmol	$l_{\rm c} {\rm m}^{-2})$					$(mmol m^{-2})$	
1981	843	34	40.0	26.5	124	27.7	1.7	185	52	92	69	188	32
1982	366	19	31.4	20.3	89	8.1	1.0	112	33	54	53	129	22
1983	428	30	44.1	22.7	78	14.0	1.5	119	48	61	53	132	18
1984	543	23	39.3	22.0	100	16.7	1.4	147	36	62	59	149	28
1985	417	22	36.2	21.1	89	14.6	1.5	127	39	63	60	144	21
1986	556	23	34.2	18.8	87	19.2	1.1	122	38	49	65	144	29
1987	621	22	53.0	20.3	89	20.1	1.0	146	39	99	53	127	13
1988	522	28	25.9	15.2	99	15.0	0.8	66	36	52	51	115	15
1989	351	23	34.7	18.6	71	10.4	0.9	95	33	64	47	109	6
1990	415	36	50.6	18.7	51	3.6	0.7	76	41	60	42	113	12
1991	329	32	31.0	17.2	57	2.6	0.8	73	34	65	50	129	15
1992	501	33	50.3	19.9	53	4.6	0.7	79	37	63	47	132	22
1993	590	34	26.2	15.3	47	5.2	0.5	LL	28	59	55	134	20
1994	562	26	32.7	10.9	33	11.5	0.5	09	30	47	51	112	14
1995	502	29	65.7	18.4	35	6.9	0.6	65	35	58	45	117	14
1996	450	19	31.4	9.3	29	5.9	0.3	58	23	60	51	123	11
1997	463	26	32.8	10.6	33	4.4	0.3	48	31	54	50	116	12
1998	647	29	46.4	11.5	32	5.6	0.4	57	34	68	55	142	20
1999	497	28	36.3	9.5	27	6.0	0.3	42	33	51	52	116	14
2000	547	25	51.8	9.6	26	3.9	0.3	41	29	58	48	134	28
2001	612	27	47.1	10.9	31	4.1	0.3	45	35	68	52	145	25
2002	627	23	43.2	8.6	27	3.6	0.3	45	31	60	51	131	20

294

Table 15	5.16 Stemf	low fluxes	s at Göttin	ger Wald d	luring the pe	riod 1981-	-2002 (Dat	a source: No	ordwestdeu	tsche Forst	liche Versue	chsanstalt)	
Year	H_2O	Na^+	\mathbf{K}^{+}	${\rm Mg}^{2+}$	Ca^{2+}	H^{+}	Mn^{2+}	$\mathrm{SO_4^{2-}}$	Cl^{-}	$\mathrm{NH_4}^+$	NO_3^{-}	Ntot	$\mathbf{N}_{\mathrm{org}}$
	(mm)					(mm	$ol_c m^{-2}$)					(mmol m ⁻²)	
1981	183	14	24.1	8.1	41	53.6	0.5	120	25	33	27	70	10
1982	90	8	18.8	5.8	28	16.9	0.7	65	16	20	23	50	7
1983	132	22	37.6	12.3	49	43.7	0.9	124	39	22	30	61	10
1984	137	11	30.9	8.7	40	33.7	0.4	102	20	16	19	45	10
1985	91	6	24.3	6.7	28	25.8	0.4	78	16	27	24	59	6
1986	102	6	21.7	T.T	34	24.8	0.4	75	17	16	23	46	٢
1987	159	10	31.6	7.2	35	32.7	0.3	85	17	20	23	49	9
1988	95	8	16.0	4.4	18	7.9	0.2	48	12	19	13	36	4
1989	86	6	13.9	4.2	18	12.9	0.2	43	13	15	16	33	5
1990	104	15	22.5	6.0	19	9.6	0.3	43	19	18	21	45	9
1991	71	8	15.4	3.4	12	5.0	0.1	31	11	20	15	41	9
1992	95	6	15.3	3.3	11	6.0	0.1	27	11	7	9	21	5
1993	103	9	13.2	2.1	8	5.4	0.1	26	9	12	12	28	5
1994	156	6	17.8	2.5	10	8.0	0.1	30	11	11	14	27	5
1995	86	8	15.8	2.0	9	3.2	0.1	21	10	10	9	23	б
1996	78	4	12.3	1.3	5	2.3	0.1	17	5	6	8	20	б
1997	90	5	10.9	1.1	4	2.0	0.0	14	9	10	10	23	б
1998	108	5	11.5	0.9	4	1.1	0.1	11	5	6	6	21	б
1999	80	5	8.7	1.0	4	1.3	0.1	6	9	8	6	20	б
2000	66	7	12.2	1.4	5	1.0	0.0	10	8	9	6	20	4
2001	91	4	14.3	1.5	4	0.2	0.0	11	5	7	9	18	S
2002	95	5	15.2	1.3	4	0.2	0.0	12	9	7	8	19	4

Table 15	.17 Rates	of open fi	ield deposi	tion at Zie1	renberg duri	ing the per-	iod 1990–2	002 (Data sc	ource: Nor	dwestdeutsc	the Forstlich	e Versuchsanstalt)	
Year	H_2O	Na^+	K^{+}	${\rm Mg}^{2+}$	Ca^{2+}	H^{+}	Mn^{2+}	$\mathrm{SO_4^{2-}}$	Cl^{-}	$\mathrm{NH_4}^+$	NO_3^-	$ m N_{tot}$	$\mathbf{N}_{\mathrm{org}}$
	(mm)					(mm,	$ol_c m^{-2}$)					(mmol m ⁻²)	
1990	630	29	10.3	18.7	39	19.9	0.2	51	17	32	34	78	11
1991	529	21	6.9	17.4	39	29.2	0.2	49	17	28	35	72	6
1992	742	34	9.1	17.6	37	34.2	0.3	63	25	4	37	91	10
1993	742	28	7.7	30.4	61	18.3	0.3	60	21	52	42	103	6
1994	780	35	14.5	34.1	67	16.7	0.3	57	29	61	39	111	10
1995	721	29	6.9	19.1	33	17.9	0.3	46	22	42	30	82	10
1996	688	17	5.7	15.4	28	14.4	0.2	43	17	45	37	91	6
1997	707	18	4.3	16.8	32	18.8	0.1	42	22	31	32	69	٢
1998	890	28	6.3	18.8	35	18.3	0.2	42	27	35	36	80	6
1999	802	27	5.1	16.1	30	13.2	0.1	32	23	30	31	73	11
2000	800	25	7.5	18.4	35	10.5	0.1	39	23	45	42	98	11
2001	758	24	3.6	13.8	27	8.7	0.1	26	22	24	33	65	٢
2002	981	23	5.0	14.8	27	8.9	0.2	36	21	41	40	89	6

Table 1:	5.18 Thro	ughfall flı	IXes at Ziere	enberg duri	ng the peric	od 1990–200	02 (Data sc	ource: Nordy	vestdeutsc	he Forstlich	e Versuchs:	anstalt)	
Year	H_2O	Na^+	\mathbf{K}^{+}	${\rm Mg}^{2+}$	Ca^{2+}	H^{+}	Mn^{2+}	$\mathrm{SO_4}^{2-}$	Cl_	$\mathrm{NH_4}^+$	NO_3^-	N _{tot}	$N_{\rm org}$
	(mm)					(mmo)	$l_{\rm c}~{\rm m}^{-2})$					(mmol m ⁻²)	
1990	424	42	61.6	39.9	73	6.6	0.6	LL	35	40	70	123	13
1991	355	35	55.5	44.6	79	6.9	0.7	83	36	42	64	122	16
1992	508	54	114.4	55.7	81	18.8	0.7	94	61	50	67	144	26
1993	497	46	51.3	49.7	89	5.5	0.4	96	51	68	80	168	19
1994	537	50	49.2	53.6	76	10.2	0.3	76	54	49	62	125	14
1995	483	57	70.0	58.2	79	6.5	0.7	88	64	50	61	141	30
1996	491	33	61.0	38.8	62	5.8	0.3	90	4	09	75	152	18
1997	495	42	48.2	42.1	68	11.5	0.5	76	62	55	80	152	18
1998	646	54	75.2	48.8	78	4.8	0.5	70	68	65	73	164	26
1999	555	48	46.0	33.8	57	7.024	0.3	49	57	48	71	135	16
2000	555	49	80.6	42.3	99	6.65	0.2	57	59	61	62	147	24
2001	549	46	66.7	34.4	54	2.383	0.4	51	59	43	65	128	20
2002	755	43	86.4	35.9	56	3.617	0.4	62	52	70	67	165	28

Table 15	5.19 Stemfic	ow fluxes	at Zierei	nberg durin,	g the period	1990–20	02 (Data so	urce: Nordw	'estdeutsch	he Forstlich	e Versuchsan	stalt)	
Year	H_2O	Na^+	\mathbf{K}^{+}	Mg^{2+}	Ca^{2+}	H^{+}	Mn^{2+}	$\mathrm{SO_4}^{2-}$	Cl^{-}	$\mathrm{NH_4}^+$	NO_3^-	${ m N}_{ m tot}$	$N_{\rm org}$
	(mm)					(mi	$mol_{c} m^{-2}$)					(mmol m ⁻²)	
1990	58	7	10	5	10	3	0.1	17	5	6	11	22	3
1991	50	7	11	5	12	5	0.1	22	Ζ	10	12	26	4
1992	68	8	12	5	10	14	0.1	18	8	8	10	22	4
1993	74	9	10	5	10	4	0.1	16	9	11	7	21	б
1994	79	9	8	5	10	б	0.0	11	Ζ	8	4	15	б
1995	68	8	6	7	11	б	0.1	23	10	9	5	15	4
1996	70	5	10	4	8	7	0.1	19	9	7	9	17	4
1997	72	5	10	4	8	б	0.0	16	L	5	4	14	4
1998	96	8	14	5	6	1	0.1	15	10	5	ŝ	14	9
1999	85	9	13	5	8	1	0.0	12	11	5	5	16	9
2000	83	11	19	5	10	1	0.0	14	14	10	7	23	7
2001	82	6	23	5	6	0	0.1	18	13	13	6	31	6
2002	113	7	19	4	9	0	0.0	12	6	14	9	27	8

References

- Aber JD (2002) Nitrogen saturation in temperate forest ecosystems: current theory, remaining questions and recent advances. Plant Soil 247:179–188
- Aber J, McDowell W, Nadelhoffer K, Magill A, Berntson G, Kamakea M, McNulty S, Currie W, Rustad L, Fernandez I (1998) Nitrogen saturation in temperate forest ecosystems: hypotheses revisited. BioScience 48:921–934
- Balazs A (1998) 14 Jahre Niederschlagsdeposition in Hessischen Waldgebieten: Ergebnisse von den Meßstationen der Waldökosystemstudie Hessen. Hessische Landesanstalt für Forsteinrichtung, Waldforschung und Waldökologie Forschungsbericht 25
- Benecke P (1984) Der Wasserumsatz eines Buchen- und eines Fichtenwaldökosystems im Hochsolling. Schr. Forstl. Fak. Univ. Göttingen Nieders. Forstl. Versuchsanstalt 77, JD Sauerländer, Frankfurt, Germany
- Binkley D, Högberg P (1997) Does atmospheric deposition of nitrogen threaten Swedish forests? Forest Ecol Manage 92:119–152
- Brechtel HM, Hammes W (1984) Aufstellung und Betreuung des Niederschlagssammlers "Münden". Meßanleitung 3, Hess Forstl Versuchsanstalt, 2. Auflage
- Bredemeier M (1988) Forest canopy transformation of atmospheric deposition. Water Air Soil Pollut 40:121–138
- Brumme R, Leimcke U, Matzner E (1992) Interception and uptake of NH₄ and NO₃ from wet deposition by above-ground parts of young beech (*Fagus silvatica* L.) trees. Plant Soil 142:273–279
- Christophersen N, Hooper RP (1992) Multivariate analysis of stream water chemical data: the use of principal components analysis for the end-member mixing problem. Water Resour Res 28:99–107
- De Vries W, Reinds GJ, van der Salm C, Draaijers GPJ, Bleeker A, Erisman JW, Auee J, Gundersen P, van Dobben H, de Zwart D, Derome J, Voogd JCH, Vel EM (2001) Intensive monitoring of forest ecosystems in Europe: technical report 2001. EC-UN/ECE 2001, Brussels, pp 166
- Draaijers GPJ (1999) Canopy budget models applicable for use within the intensive monitoring program. In: United Nations Economic Commission for Europe, Convention on Long–Range Transboundary Air Pollution, International Co-operative Programme on Assessment and Monitoring of Air Pollution Effects on Forests (eds) Manual on methods and criteria for harmonized sampling, assessment, monitoring and analysis of the effects of air pollution on forests Part VI. Measurement of deposition and air pollution. UNECE, CLRTAP, ICPAMA-PEF, Geneva, Switzerland, pp 40–52
- Draaijers GPJ, Erisman JW (1995) A canopy budget model to assess atmospheric deposition from throughfall measurements. Water Air Soil Pollut 85:2253–2258
- Draaijers GPJ, Erisman JW, Spranger T, Wyers GP (1996) The application of throughfall measurements for atmospheric deposition monitoring. Atmos Environ 30
- Draaijers GPJ, Bleeker A, van der Veen D, Erisman JW, Möls H, Fonteijn P, Geusenbroek M (2001) Field intercomparison of throughfall, stemflow and precipitation measurements performed within the framework of the Pan-European Intensive Monitoring Program of EU/ICP forests. TNO rep. R 2001/140
- Eichhorn J (1995) Stickstoffsättigung und ihre Auswirkungen auf das Buchenwaldökosystem der Fallstudie Zierenberg. Ber Forschungszentrum Waldökosysteme A 124
- Eichhorn J, Haußmann T, Paar U, Reinds GJ, de Vries W (2001) Assessments of impacts of nitrogen deposition on beech forests. Scientific World Journal 1(Suppl 3) 423–432
- Fassbender HW, Ahrens E (1977) Laborvorschriften und Praktikumsanleitung: Zur chemischen Untersuchung von Vegetations-, Boden- und Wasserproben im Institut für Bodenkunde und Waldernährung der Universität Göttingen. Göttinger Bodenkd Ber 47
- Feger K-H (1986) Biogeochemische Untersuchungen an Gewässern im Schwarzwald unter besonderer Berücksichtigung atmogener Stoffeinträge. Freiburger Bodenkundl Abh 17

Galloway NJ (1995) Acid deposition: perspectives in time and space. Water Air Soil Pollut 85:15-24

- Garten CT, Schwab AB, Shirshac TL (1998) Foliar retention of 15N tracers: implications for net canopy exchange in low- and high-elevation forest ecosystems. Forest Ecol Manage 103:211–216
- Gauger T, Anshelm F, Schuster H, Erisman JW, Vermeulen AT, Draaijers GPJ, Bleeker A, Nagel H-D (2002) Mapping of ecosystem specific long-term trends in deposition loads and concentration of air pollutants in Germany and their comparison with critical loads and critical levels, Part 1: deposition loads 1990–1999. Inst. f. Navigation, Stuttgart, pp 1–207
- Gerke H (1987) Untersuchungen zum Wasserhaushalt eines Kalkbuchenwald-Ökosystems und zur Wasserbewegung in flachgründigen Böden und im durchwurzelten Kalkgestein als Grundlage zur Modellentwicklung. Ber Forschungszentrum Waldökosysteme/Waldsterben A27
- Godbold DL, Fritz H-W, Jentschke G, Meesenburg H, Rademacher P (2003) Root turnover and root necromass accumulation of Norway spruce (*Picea abies*) are affected by soil acidity. Tree Physiol 23:915–921
- Gorham E, Martin FB, Litzau JT (1984) Acid rain: ionic correlations in the eastern United States, 1980–1981. Science 225:407–409
- Harrison AF, Schulze E-D, Gebauer G, Bruckner G (2000) Canopy uptake and utilization of atmospheric pollutant nitrogen. In: Schulze ED (ed) Carbon and nitrogen cycling in European forest ecosystems. Ecol Stud 142:171–188
- Hauhs M, Rost-Siebert K, Raben G, Paces T, Vigerust B (1989) Summary of European data. In: Malanchuk JL, Nilsson J (eds) The role of nitrogen in the acidification of soils and surface waters. NORD, København, Denmark, 5–1–5–37
- Horn R, Schulze E-D, Hantschel R (1989) Nutrient balance and element cycling in healthy and declining Norway spruce stands. Biogeochemistry of forested catchments in a changing environment: a German case study. Ecol Stud 77:444–455
- Ibrom A (1993) Die Deposition und die Pflanzenauswaschung (leaching) von Pflanzennährstoffen in einem Fichtenbestand im Solling. Ber Forschungszentrum Waldökosysteme A 105
- Ibrom A, Oltchev A, Constantin J, Marques M, Gravenhorst G (1995) Die Stickstoffimmission und – deposition in Wäldern. IMA-Querschnittseminar Wirkungskomplex Stickstoff und Wald, Umweltbundesamt Texte 28/95:20–29
- Johnson DW, Cresser MS, Nilsson SI, Turner J, Ulrich B, Binkley D, Cole DW (1991) Soil changes in forest ecosystems: evidence for and probable causes. Proc Royal Soc Edinburgh 97B:81–116
- Klemm O (1989) Leaching and uptake of ions through above-ground Norway spruce tree parts. In: Schulze E-D, Lange O, Oren R (eds) Forest decline and air pollution. A study or spruce on acid soils. Ecol Stud 77:210–237
- König N, Fortmann H (1996a) Probenvorbereitungs-, Untersuchungs- und Elementbestimmungs-Methoden des Umweltanalytik-Labors der Niedersächsischen Forstlichen Versuchsanstalt und des Zentrallabor II des Forschungszentrums Waldökosysteme. Teil 1: Elementbestimmungsmethoden A-M. Ber Forschungszentrum Waldökosysteme B 46
- König N, Fortmann H (1996b) Probenvorbereitungs-, Untersuchungs- und Elementbestimmungs-Methoden des Umweltanalytik-Labors der Niedersächsischen Forstlichen Versuchsanstalt und des Zentrallabor II des Forschungszentrums Waldökosysteme. Teil 2: Elementbestimmungsmethoden N-Z und Sammelanhänge. Ber Forschungszentrum Waldökosysteme B 47
- König N, Fortmann H (1996c) Probenvorbereitungs-, Untersuchungs- und Elementbestimmungs-Methoden des Umweltanalytik-Labors der Niedersächsischen Forstlichen Versuchsanstalt und des Zentrallabor II des Forschungszentrums Waldökosysteme. Teil 3: Gerätekurzanleitungen und Gerätekurzanleitungen Datenverarbeitung. Ber Forschungszentrum Waldökosysteme B 48
- König N, Fortmann H (1996d) Probenvorbereitungs-, Untersuchungs- und Elementbestimmungs-Methoden des Umweltanalytik-Labors der Niedersächsischen Forstlichen Versuchsanstalt und des Zentrallabor II des Forschungszentrums Waldökosysteme. Teil 4: Probenvorbereitungsund Untersuchungsmethoden, Qualitätskontrolle und Datenverarbeitung. Ber Forschungszentrum Waldökosysteme B 49
- Langusch J-J, Borken W, Armbruster M, Dise NB, Matzner E (2003) Canopy leaching of cations in Central European forest ecosystems: a regional assessment. J Plant Nutr Soil Sci 166: 168–174

- Lindberg SE, Lovett GM, Richter DD, Johnson DW (1986) Atmospheric deposition and canopy interactions of major ions in a forest. Science 231:141–145
- Lovett GM, Lindberg SE (1993) Atmospheric deposition and canopy interactions of nitrogen in forests. Can J Forest Res 23:1603–1616
- Marques MC, Gravenhorst G, Ibrom A (2001) Input of atmospheric particles into forest stands by dry deposition. Water Air Soil Pollut 130:571–576
- Matzner E, Meiwes KJ (1994) Long-term development of element fluxes with bulk precipitation and throughfall in two German forests. J Environ Qual 23:162–166
- Matzner E, Murach D (1995) Soil changes induced by air pollutant deposition and their implication for forests in central Europe. Water Air Soil Pollut 85:63–76
- Matzner E, Zuber T, Alewell C, Lischeid G, Moritz K (2004) Trends in deposition and canopy leaching of mineral elements as indicated by bulk depositon and throughfall measurements. In: Matzner E (ed) Biogeochemistry of forested catchments in a changing environment: a German case study. Ecol Stud 172:233–250
- Meesenburg H, Meiwes KJ, Rademacher P (1995) Long-term trends in atmospheric deposition and seepage output in northwest German forest ecosystems. Water Air Soil Pollut 85:611–616
- Meesenburg H, Meiwes KJ, Schulze A, Rademacher P (1997) Bodendauerbeobachtungsflächen auf forstlich genutzten Böden (BDF-F). Arb-H Boden 2/1997:77–94
- Meesenburg H, Mohr K, Dämmgen U, Schaaf S, Meiwes KJ, Horvath B (2005) Stickstoff-Einträge und – Bilanzen in den Wäldern des ANSWER-Projektes – eine Synthese. Landbauforschung Völkenrode, Sonderh 279:95–108
- Meiwes KJ, Hauhs M, Gerke H, Asche N, Matzner E, Lamersdorf N (1984) Die Erfassung des Stoffkreislaufes in Waldökosystemen: Konzept und Methodik. Ber Forschungszentrum Waldökosysteme/Waldsterben 7:68–142
- Meiwes KJ, Meesenburg H, Rademacher P (1999) Wirkung von Stickstoff auf Waldökosysteme. Mitt NNA 1/99:118–121
- Mohr K, Schaaf S, Horvath B, Meesenburg H, Dämmgen U (2005) Stoff- und Energieflüsse der im ANSWER-Projekt untersuchten Waldbestände. In: Bestimmung von Ammoniak-Einträgen aus der Luft und deren Wirkung auf Waldökosysteme (ANSWER-Projekt), Landbauforschung Völkenrode, Sonderheft 279:69–94
- Papen H, Gessler A, Zumbusch E, Rennenberg H (2002) Chemolithoautotrophic nitrifiers in the phyllosphere of a spruce ecosystem receiving high atmospheric nitrogen input. Curr Microbiol 44:56–60
- Rothe A, Huber C, Kreutzer K, Weis W (2002) Deposition and soil leaching in stands of Norway spruce and European beech. Results from the Höglwald research in comparison with other European case studies. Plant Soil 240:1–14
- Schmitt M, Thöni L, Waldner P, Thimonier A (2005) Total deposition of nitrogen on Swiss longterm forest ecosystem research (LWF) plots: comparison of the throughfall and the inferential method. Atmos Environ 39:1079–1091
- Spranger T (1992) Erfassung und ökosystemare Bewertung der atmosphärischen Deposition und weiterer oberirdischer Stoffflüsse im Bereich der Bornhöveder Seenkette. EcoSys Beitr Ökosystemforschung (Suppl 4)
- Stadler B, Michalzik B (2000) Effects of phytophagous insects on micro-organisms and throughfall chemistry in forest ecosystems: herbivores as switches for the nutrient dynamics in the canopy. Basic Appl Ecol 1:109–116
- Sutton MA, Fowler D, Burkhardt JK, Milford C (1995) Vegetation atmosphere exchange of ammonia: canopy cycling and the impacts of elevated nitrogen inputs. Water Air Soil Pollut 85:2057–2063
- Tyler G (1983) Does acidification increase metal availability and thereby inhibit decomposition and mineralisation processes in forest soils? In: National Swedish Environment Protection Board (ed) Ecological effects of acid deposition. Report and Backgroundpapers 1982 Stockholm conference on the acidification of the environment, Expert meeting I – Report PM 1636:245–256

- Ulrich B (1983) Interaction of forest canopies with atmospheric constituents: SO₂, alkali and alkali earth cations and chloride. In: Ulrich B, Pankrath J (eds) Effects of accumulation of air pollutants in forest ecosystems. Dordrecht, Reidel publ Co, pp 33–45
- Ulrich B (1994) Nutrient and acid/base budget of central European forest ecosystems. In: Hüttermann A, Godbold DL (Hrsg) Effects of acid rain on forest processes. Wiley, New York, pp S1–S43

Umweltbundesamt (2000) Daten zur Umwelt, 7th edn. Erich Schmidt, Berlin, p 378

- Van Leeuwen EP, Draaijers GPJ, de Jong PGH, Erisman JW (1996) Mapping dry deposition of acidifying components and base cations on a small scale in Germany. National Institute of Public Health and the Environment (RIVM). Report no. 722108012
- Veithen C (1996) Ionentransporte durch Cuticlen von Buchenblättern und Fichtennadeln. Ber Forschungszentrum Waldökosysteme A 136
- Wright RF, Roelofs JGM, Bredemeier M, Blanck K, Boxman AW, Emmett BA, Gundersen P, Hultberg H, Kjønaas OJ, Moldan F, Tietema A, van Breemen N, van Dijk HFG (1995) NITREX: responses of coniferous forest ecosystems to experimentally changed deposition of nitrogen. Forest Ecol Manage 71:163–169
- Zimmerling R, Dämmgen U, Haenel H-D (2000) Flüsse versauernd und eutrophierend wirkender Spezies zwischen Atmosphäre und Wald- und Forstökosystemen. In: Dämmgen U (ed) Versauernde und eutrophierende Luftverschmutzung in Nordost-Brandenburg, Landbauforschung Völkenrode Sonderheft 213:95–128